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What caused extreme weather?

Liability for climate change

Willit everbe possible to sue anyone for damaging the climate?

Myles Allen ’ o
Possible changes in risk attributable to extemal cause A

As I write this article in January 2003, the none pd 4 10x
flood waters of the River Thames are about :
30 centimetres from my kitchen door and
slowly rising. On the radio, a representative
of the UK Met Office has just explained that
although this is the kind of phenomenon
that global warming might make more
frequent, it is impossible to attribute this
particular event (floods in southern
England) to past emissions of greenhouse
gases. What is less clear is whether the
attribution of specific weather events to 00
externaldriversof climate change will always

be impossible in principle, or whether it is

simply impossible at present, given our  Figure | How wemight be able to calculate liability for climate change. We will never know exactly how
current state of understanding of the climate ~ external drivers of this change, such as greenhouse-gas emissions, alter the risk of undesirable events,
system. The issue is important as it touches  suchasfloods, but this does not prevent us working out a ‘mean likelihood-weighted liability’ by

on a question that is far closer to many of  averaging overall possibilities consistent with currentlyavailable information.
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Attribution of extreme rainfall from Hurricane Harvey,
August 2017
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Abstract

During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation,
particularly over Houston and the surrounding area on August 26-28. This resulted in extensive
flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return
period of the highest observed three-day precipitation amount, 1043.4 mm 3dy™" at Baytown, is more
than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750

mm 3dy~") over a large area in the current climate. Observations since 1880 over the region show a
clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two
times the increase of the moisture holding capacity of the atmosphere expected for 1°C warming
according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was
increased by both the moisture content and stronger winds or updrafts driven by the heat of
condensation of the moisture. We also analysed extreme rainfall in the Houston area in three
ensembles of 25 km resolution models. The first also shows 2 x CC scaling, the second 1 X CC scaling
and the third did not have a realistic representation of extreme rainfall on the Gulf Coast.
Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation
about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more
likely. This analysis makes clear that extreme rainfall events along the Gulf Coastare on the rise. And




The procedure

B Which historical event is of interest? e.g. Hurricane Harvey flooding in Aug 2017

B How can we best measure its intensity? Construct a suitable intensity index for
such events that can be reliably observed and simulated e.g. 3-day mean or max
of area average precipitation (possible future parametric trigger variable?).

B How much does global warming change the probability of extremes in this index?

B Observational approach: Estimate the trend by fitting an extreme value distribution to
past observations that includes global mean temperature as a covariate e.g. GEV fit
with temperature-dependent location and scale parameters. Quantify the trend by
calculating a Probability Ratio (PR) equal to the probability of exceedance in the year
of interest to that of the probability of exceedance in the the pre-industrial period.
(detection)

B Climate model approach. Select climate models that can realistically simulate such
events and then after some bias correction estimate Probability Ratios from
experiments made with these models. (attribution)

B Compare and and combine the different Probability Ratio estimates to make a
robust detection and attribution statement. (synthesis)



Example: Hurricane Harvey flooding
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van Oldenborgh et al. (2017): Attribution of extreme rainfall from Hurricane Harvey,
Environ. Res. Lett. 12 124009



Extreme Value fits to the observations

(a) GHCN-D 85 stations (b) GHCN-D 13 stations
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Figure 4. Fit of the annual maximum three-day average GHCN-D station precipitation on the US Gulf Coast to a GEV that scales with
smoothed global mean surface temperature. (a) Location of 85 GHCN-D stations with minimum 30 years of data and 0.1° apart, (¢
observations (blue marks), location parameter u (thick red line), g + & and u + 20 (thin red lines) versus global mean temperature
anomalies, relative to 1951-1980; the two vertical red lines show g and its 95% ClI for the two climates in (e). (¢) Gumbel plot of the
GEV fit in 2017 (red line, with 95% uncertainty estimates) and 1900 (blue line); marks show data points drawn twice: scaled up with
the fitted trend to 2017 and scaled down to 1900. The green square (line) denotes the intensity of the observed event at Baytown, TX.
Panels (b, d, f) are the same as (a, ¢, €), but for 13 GHCN-D stations with a minimum 80 years of data and minimum spatial separation
of 1.0°.



Attribution measures

Probability Ratio

Fractional Attributed Risk

Intensity Change

Pr(X >xIGW)  1-F;,(x)

PR= =
Pr(X>xInoGW) 1-F,.,(x)
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where x 1s the observed value and F(x) = Pr(X < x).

The Generalised Extreme Value fit assumes:

F(x)=exp
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where the parameters can depend on global temperature.



Attribution using climate models

Two ways to obtain the influence of anthropogenic emissions
(greenhouse gases, aerosols) on extremes simulated by climate
models:

1. Fit an extreme value distribution to a transient run as was done for
the observations:

2. Run the model twice, once with current climate conditions, once with
no anthropogenic emissions (counterfactual experiment). Then
either count the number of extreme events above the threshold to
compute PR = p1/p0. Or use two fits to extreme value functions to
compute the probabilities pO0, p1.

The probability ratio PR can be re-expressed as either a Fractional
Attributable Risk (FAR=1-1/PR) or the change in intensity Al can be

calculated.



Example: climate model discrepancy

mean annual MIROC-ESM historical ensO txx [degrees C]
1850:2005
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Maximum daily average air temperature exceeds 70°C whereas maximum
ever reliably observed was 41.9°C in Australia on 17 Dec 2019
(and 54.4°C in Death Valley 16 August 2020!)



Synthesis

Sometimes, the models agree with the observations (as
demanded in the model evaluation) but not with each other.
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Figure 7. Synthesis of the results. (a) Intensity changes 18802017 for local and regional extreme three-day precipitation events along
the US Gulf Coast (%). Observations are shown in blue, models in red. The magenta line is the average of the three estimates from local
observations (with smaller uncertainties) and the two regional model analyses (that can only reproduce these more extreme events
reliably). (b) Same for the RRs (changes in probability).

van Oldenborgh et al. (2017): Attribution of extreme rainfall from Hurricane Harvey,
Environ. Res. Lett. 12 124009



Some reflections

A high probability ratio does NOT tell you that global warming caused the event of
interest - it’s not equal to Pr(due to global warming)/Pr(not due to global

warming). [Prosecutor’s fallacy] E.g. Drinking gin greatly increases my probability
of falling over but if | fall over it doesn’t necessarily mean I've been drinking gin!

It is not surprising that PR>1 for events one suspects might increase with global
warming (e.g. heat waves and flooding). [Selection bias]

There is uncertainty in the observational estimates of PR due to shortness of
record, inhomogeneities, natural variability, quality of GEV fit etc.

PR ratios can be very dependent on which index is used to measure the event.

Not that obvious how to correct and combine risk ratio estimates from climate
models that have discrepancies and dependencies.

The probability ratio summarises changing probability of hazard not risk — no loss,
vulnerability or exposure data is formally used.
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Further reading

s https://www.worldweatherattribution.org/

= van Oldenborgh et al. 2017 Attribution of extreme rainfall from Hurricane Harvey, Environ.
Res. Lett. 12 124009

= Frame, D.J., Rosier, S.M., Noy, |. et al. Climate change attribution and the economic
costs of extreme weather events: a study on damages from extreme rainfall and drought.
Climatic Change (2020). https://doi.org/10.1007/s10584-020-02729-y

= Attribution of Extreme Weather Events in the Context of Climate Change,
National Academies of Sciences Engineering and Medicine
(2016). 186pp.

= Van Oldenborgh, Pathways and pitfalls in extreme event attribution: reflections based on
the WWA experience (submitted).

Thank you for your attention

Any questions?
d.b.stephenson@exeter.ac.uk
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