MODULAR CURVES AND THEIR ARITHMETIC 2023 PROBLEM SESSION

Q1. F. Najman

Let X be a curve defined over \mathbb{Q} of genus ≥ 2 and \mathbb{Q}-gonality γ. Let $f: X \rightarrow \mathbb{P}^{1}$ be a degree d morphism. Suppose $f \neq g \circ h$ where $\operatorname{deg}(g), \operatorname{deg}(h) \geq 2$. Let

$$
S=\left\{P \in f^{-1}\left(\mathbb{P}^{1}(\mathbb{Q})\right): \operatorname{deg}(P)<d\right\}
$$

There are known instances for which S is always a finite set. For example when $d=2$, Faltings' finiteness theorem asserts that S is finite. Suppose $J_{X}(\mathbb{Q})$ is finite where J_{X} is the Jacobian of X and suppose $d=\gamma$. Then S is a finite set.

Do there exist X and f for which S is an infinite set?

> Q2. P. Parent

Let p be a prime. Recall that $X_{0}(p)$ is:

- a degree 2 cover of $X_{0}^{+}(p)$;
- a degree $p+1$ cover of \mathbb{P}^{1};
- a degree $(p+1) / 2$ cover of an elliptic curve of conductor p.

Is this a complete list of covered curves? In particular, is $X_{0}(p)$ a degree d cover of a curve X such that $d \geq(p+1) / 3$?

Q3. R. Visser
Does there exists a smooth genus 2 curve C / \mathbb{Q} such that $\mathbb{Q}(J[2])=\mathbb{Q}$ and $\mathbb{Q}(J[4])=\mathbb{Q}(i)$, where J is the Jacobian of C ?
C. Maistrét: Use Richelot isogeny to try to prove that this is never true. H. Yoo: Consider taking the product of 2 elliptic curves.

Q4. B. Bhatta

Let V be a $M_{d}(\mathbb{C})$ module. Let $\phi: V \times V \rightarrow M_{d}(\mathbb{C})$ be a non-degenerate skew Hermitian form. Does there exist $z \in V$ such that $\phi(z, z) \in \mathrm{GL}_{d}(\mathbb{C})$?

Q5. D. K. Angdinata

Let E be an elliptic curve over \mathbb{Q}. Let $\phi: X_{0}(N) \rightarrow E$ denote the modular parameterisation. Let c_{0} denote the Manin constant. Cremona conjectured that $c_{0} \leq 5$. Suppose that the following hold:

- $L(E, 1) \neq 0$;
- $3+c_{0}$;
- $\operatorname{im}\left(\rho_{E, 3}\right)=9.24 .02$.

Why does 9 divide the Tamagawa number of E ?

[^0]Let C be a fixed Frey hyperelliptic curve. Write $C: y^{2}=f(x)$. Is it true that $\operatorname{Gal}(f)$ is necessarily a product of cyclic groups? Is is true that $\operatorname{Gal}(f)$ is necessarily solvable? If so, can this be proved from the definition of C ? (For the 3 known curves C, the answer is yes.)

Q7. S. Anni

Let E be an elliptic curve over \mathbb{Q}. Let $[E]$ denote the isogeny class of E. Kenku showed that $\#[E] \leq 8$. Let $p>37$ be a prime. If E has conductor p such that $p+\left(6+u^{2}+v^{2}\right)$ then a result of Serre asserts that $\#[E]=1$. Is there a uniform bound if E is defined over a number field and has prime conductor norm? For example, if E is defined over $\mathbb{Q}(\sqrt{29})$?

[^0]: Date: December 10, 2023.

