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Main theorem 1 of the talk (MC, Søren Galatius, Sam
Payne)

dimH4g−6(Mg;Q) >> 1.32g.

Mg is the moduli space of Riemann surfaces of genus g.



Main theorem 2 of the talk, time permitting (Madeline
Brandt, Juliette Bruce, MC, Margarida Melo, Gwyneth
Moreland, Corey Wolfe)

GrW0 Hk
c (A5;Q) =

{
Q if k = 10, 15,

0 else,

GrW0 Hk
c (A6;Q) =

{
Q if k = 12,

0 else,

GrW0 Hk
c (A7;Q) =

{
Q if k = 14, 19, 23, 28

0 else.

The theorem refers to the “weight 0, compactly supported
Q-cohomology” of the moduli space Ag of principally
polarized abelian varieties of dimension g.



21 0 0 0 0 0 0 0 Q
20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 Q
15 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 Q
11 0 0 0 0 0 0 0 0
10 0 0 0 0 0 Q 0 0
9 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 Q
6 0 0 0 0 0 0 Q 0
5 0 0 0 0 0 Q 0 0
4 0 0 0 0 0 0 0 0 0
3 0 0 0 Q 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

q / p 0 1 2 3 4 5 6 7 8 9 10

Table: The (p, q) entry shows GrW0 Hp+q
c (Ap;Q). The blank entries for

p ≥ 8 are currently unknown.



Part I. Moduli spaces



A moduli space is a parameter space.

Its points correspond to the geometric objects you want to
study.

A moduli space is like a mail-order catalog. Pointing to the
catalog specifies an object, elsewhere in a showroom.



Warmup: what is a moduli space of lines in R2?

y = mx + c

R2 = {(m, c)} is a moduli space for lines in R2 . . .
. . . that are not vertical.
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Next, R is a moduli space for vertical lines in R2:

α ∈ R corresponds to the line x = α.

But R2 tR is not a very satisfying moduli space for lines in R2.

We wish to have a metric, or topology, on our moduli space,
that expresses which objects are near each other.
We want to glue together

Notice:
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The lines passing through a fixed point (x0, y0) form a line in
the (m, c)-plane of slope −x0.



This suggests a way to glue � l

We have constructed a moduli space of lines in R2!



Two distinct points in R2 determine a unique line.

now translates to

Two distinct lines in the (m, c)-plane meet at a unique point.

1. Intersections in the moduli space encode incidence problems.

2. This is one reason that compactifications of moduli spaces
are helpful.

3. Another reason to study compactifications: they can tell you
about the topology of the space being compactified!
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Part II.Mg



A Riemann surface is a compact, connected complex
manifold of dimension 1.



Riemann surfaces are classified, first and foremost, by their
genus (number of handles):

They are a meeting point for many different kinds of geometry
(and algebra, combinatorics, physics. . .): we have identifications

1. isomorphism classes of Riemann surfaces of genus g

2. isomorphism classes of smooth, projective algebraic curves
of genus g

3. isometry classes of hyperbolic surfaces of genus g

when g ≥ 2.
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The main character:
Mg

the moduli space of Riemann surfaces of genus g, for g ≥ 2.

Mg is a (variety/scheme/orbifold/Deligne-Mumford stack),
irreducible of complex dimension 3g − 3.

It was known in broad strokes already to Riemann, who coined
the term moduli, in a paper in 1857.

But the formal construction followed much later, even after
decades of studying Mg with the assumption that it could
really be constructed!

(Grothendieck, Deligne-Mumford 60s)



Getting a feel for Mg.

First recall: n-dimensional projective space is

Pn = {lines in Cn+1 through 0} = {(z0 : · · · : zn) : zi not all 0}.

M2: every genus 2 curve admits a unique hyperelliptic
involution. . .

and is determined by the arrangement of the 6 branch points on
P1, up to isomorphism.

M2 = [M0,6/S6] = UConf(P1)/AutP1

dimM2 = 6− 3 = 3.
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Getting a feel for Mg.

M3: all (nonhyperelliptic) curves of genus 3 arise as smooth
plane quartics.

A smooth plane quartic curve is the set of solutions in P2 to a
homogeneous polynomial of degree 4 in x, y, z

a4,0,0x
4 + a3,1,0x

3y + · · ·+ a0,0,4z
4 = 0.

The moduli space of smooth plane quartic curves is

P14 −∆

where ∆ is the discriminantal hypersurface, parametrizing those
(a4,0,0 : · · · : a0,0,4) ∈ P14 that define singular plane curves.

M3 L99 (P14 −∆)/Aut(P2)

dimM3 = 14− 8 = 6.
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M2. Image: Alicia Harper



In this talk, I’ll discuss the rational cohomology of Mg. For
i ≥ 0,

H i(Mg;Q)

is a finite-dimensional vector space over Q, measuring “the
space of holes in dimension i.”

Equivalently, Mg = Tg/Modg is the quotient of Teichmüller
space by the mapping class group Modg. Therefore we
equivalently study the cohomology of the mapping class
group.

Roughly speaking, the cohomology of Mg, and its
compactifications, is studied in analogy to arithmetic groups
(Borel etc.), and to Grassmannians (Littlewood-Richardson
etc.)
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How much cohomology is there?

Harer-Zagier 1986: Asymptotically,

χ(Mg) = dimH0(Mg;Q)− dimH1(Mg;Q) + . . .

grows superexponentially in g:

(−1)g+1χ(Mg) ∼ g2g.

But we know only a vanishingly small proportion of the
cohomology explicitly.
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In what range does cohomology appear?

I In degrees at most 4g − 6 (Harer, Church-Farb-Putman,
and Morita-Sakasai-Suzuki).

I Moreover, conjectures in the literature had implied that
H4g−6−i(Mg;Q) = 0 for any fixed i ≥ 0, for g >> 0.
(Church-Farb-Putman 2012, and Kontsevich 1993)

Our theorem
dimH4g−6(Mg;Q) >> 1.32g

finds cohomology in highest possible degree, and refutes both
those conjectures.
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Ingredients for proof that

H4g−6(Mg;Q) >> 1.32g.

1. The Deligne-Mumford compactification Mg of Mg.

2. Tropical geometry/tropical moduli spaces of curves.

3. Kontsevich’s graph complex and theorems of Willwacher
from quantum algebra.



1. The Deligne-Mumford compactification Mg of Mg.

Mg is not compact. In an influential 1969 paper,
Deligne-Mumford constructed a compactification Mg ⊂Mg,
the moduli space of stable curves of genus g.

Definition. A genus g stable curve is a smooth or nodal
complex algebraic curve, of arithmetic genus g, having only
finitely many automorphisms.



Stable curves come in finitely many topological types,
equivalently dual graphs.





2. Tropical geometry/tropical moduli spaces of curves.

Tropical geometry is a modern degeneration technique in
algebraic geometry—one in which the limiting object is entirely
combinatorial.

To get the flavor, consider the family of projective plane
quartics Ct, parametrized by t ∈ C, defined by the equation

t(x4 + y4 + z4) + xyz(x+ y + z) = 0. (1)

When t→ 0, the curve degenerates to the zero locus of

xyz(x+ y + z) = 0.

X1X2

X3

X4

X1

X2

X3X4

Figure: Left: C0. Right: Trop(C0).



Table: Cartoons of abstract/embedded algebraic/tropical curves of
genus 3.

abstract embedded

algebraic

tropical



The main input from tropical geometry for today is the
tropical moduli space of curves ∆g.
(Brannetti-Melo-Viviani, Caporaso, Gathmann-Markwig, Culler-Vogtmann,. . .)



Every stable curve in Mg has a vertex-weighted dual graph.

Definition. A tropical curve of genus g is a vertex-weighted
dual graph G arising in this way, together with any metrization
` : E(G)→ R>0 with total length 1.

Definition. Let ∆g denote the moduli space of genus g
normalized tropical curves.
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Remark: The tropical moduli space ∆g arises in several
different geometric contexts.

I the quotient of Harvey’s curve complex on Sg by Modg

I the simplicial completion of Xg/OutFg, where Xg denotes
Culler-Vogtmann Outer Space

I up to homotopy (CGP), the one point compactification
(Xg/OutFg)∗



(Vogtmann “What is Outer Space?” AMS Notices August 2008)



↓



Deligne’s theory of mixed Hodge structures implies:

H2d−i(Mg;Q)� Hi−1(∆g;Q).

The cohomology groups of Mg surject onto the
homology groups of ∆g, with degree shift.

The main technical result of CGP gives an isomorphism
between the homology of ∆g to the homology of Kontsevich’s
1994 graph complex

· · · → Gg
i → Gg

i−1 → Gg
i−2 → · · · .

Here Gg
i are finite dimensional vector spaces spanned by certain

graphs of genus g with i edges.

Willwacher (2015) and F. Brown (2012) prove remarkable
theorems about the graph complex, coming from quantum
algebra/number theory, from which our theorem is deduced.
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Even though computer calculations don’t appear in our paper,
they were crucial to finding the right theorem.

Figure: The graphs appearing in the unique nonzero reduced
homology class in ∆6, with unsigned coefficients 2, 3, 6, 3, 4.



(Bar-Natan–McKay 2001 “Graph cohomology”)
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What about the results I showed you for H∗(Ag;Q)? This is
the moduli space of prinicpally polarized abelian varieties of
dimension g.

Equivalently, since Ag = Hg/Sp(2g,Z),

H∗(Ag;Q) ∼= H∗(Sp(2g,Z);Q).
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Ingredients for proof:

1. Compactification

2. Tropicalization

3. Extraction of a combinatorial chain complex



Ingredients for proof:

1. Toroidal compactifications of Ag

(Ash-Mumford-Rapaport-Tai), specifically the perfect cone
compactification.

2. Tropical moduli spaces of abelian varieties Atrop
g .

(Brannetti-Melo-Viviani, Mikhalkin-Zharkov)

3. The perfect cone complex P
(g)
• (BBCMMW).



A brief remark on P
(g)
• . The moduli space Atrop

g has a
stratification

Atrop
g = Q0 tQ1 t · · · tQg

where Qh = {positive definite h× h matrices}/GLh(Z).
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One of the main technical theorems of BBCMMW constructs a
short exact sequence

0→ P
(g−1)
• → P

(g)
• → V

(g)
• → 0

where V
(g)
• is the Voronoi chain complex.

V
(g)
• was studied/computed by Elbaz-Vincent-Gangl-Soulé. Our

computations use the computations of EVGS as input.
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Thank you! (Image: A. Harper)


