The moduli spaces \mathcal{M}_{g} and \mathcal{A}_{g} : classical and tropical

Melody Chan
Brown University

Colloquium, June 4, 2021
University of Warwick

Main theorem 1 of the talk (MC, Søren Galatius, Sam Payne)

$$
\operatorname{dim} H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbb{Q}\right) \gg 1.32^{g}
$$

\mathcal{M}_{g} is the moduli space of Riemann surfaces of genus g.

Main theorem 2 of the talk, time permitting (Madeline Brandt, Juliette Bruce, MC, Margarida Melo, Gwyneth Moreland, Corey Wolfe)

$$
\begin{aligned}
& \operatorname{Gr}_{0}^{W} H_{c}^{k}\left(\mathcal{A}_{5} ; \mathbb{Q}\right)=\left\{\begin{array}{l}
\mathbb{Q} \text { if } k=10,15, \\
0 \text { else }
\end{array}\right. \\
& \operatorname{Gr}_{0}^{W} H_{c}^{k}\left(\mathcal{A}_{6} ; \mathbb{Q}\right)=\left\{\begin{array}{l}
\mathbb{Q} \text { if } k=12, \\
0 \text { else },
\end{array}\right. \\
& \operatorname{Gr}_{0}^{W} H_{c}^{k}\left(\mathcal{A}_{7} ; \mathbb{Q}\right)=\left\{\begin{array}{l}
\mathbb{Q} \text { if } k=14,19,23,28 \\
0 \text { else } .
\end{array}\right.
\end{aligned}
$$

The theorem refers to the "weight 0 , compactly supported \mathbb{Q}-cohomology" of the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of dimension g.

$$
\begin{array}{c|lllllllllll}
21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & & & \\
20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & & & \\
15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & & & \\
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
10 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & 0 & 0 & & & \\
9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & & & \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & 0 & & & \\
5 & 0 & 0 & 0 & 0 & 0 & \mathbb{Q} & 0 & 0 & & & \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
3 & 0 & 0 & 0 & \mathbb{Q} & 0 & 0 & 0 & 0 & 0 & & \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline q / p & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Table: The (p, q) entry shows $\operatorname{Gr}_{0}^{W} H_{c}^{p+q}\left(\mathcal{A}_{p} ; \mathbb{Q}\right)$. The blank entries for $p \geq 8$ are currently unknown.

Part I. Moduli spaces

A moduli space is a parameter space.
Its points correspond to the geometric objects you want to study.

A moduli space is like a mail-order catalog. Pointing to the catalog specifies an object, elsewhere in a showroom.

Warmup: what is a moduli space of lines in \mathbb{R}^{2} ?

Warmup: what is a moduli space of lines in \mathbb{R}^{2} ?

$$
y=m x+c
$$

$$
\mathbb{R}^{2}=\{(m, c)\} \text { is a moduli space for lines in } \mathbb{R}^{2} \ldots
$$

... that are not vertical.

$$
\begin{aligned}
& 1 \geqslant \therefore \quad 111 \\
& 1 \lambda \lambda-11 \\
& 1>1-1 / 1 \\
& 1 \gg 1 / 1 \\
& 1 \backslash \backslash-1 / 1 \\
& 1 \gg 1 / 1 / \\
& 11 \times 1 \times 111
\end{aligned}
$$

Next, \mathbb{R} is a moduli space for vertical lines in \mathbb{R}^{2} :

$$
\alpha \in \mathbb{R} \quad \text { corresponds to } \quad \text { the line } x=\alpha \text {. }
$$

Next, \mathbb{R} is a moduli space for vertical lines in \mathbb{R}^{2} :

$$
\alpha \in \mathbb{R} \quad \text { corresponds to } \quad \text { the line } x=\alpha \text {. }
$$

But $\mathbb{R}^{2} \sqcup \mathbb{R}$ is not a very satisfying moduli space for lines in \mathbb{R}^{2}.
We wish to have a metric, or topology, on our moduli space, that expresses which objects are near each other.

Next, \mathbb{R} is a moduli space for vertical lines in \mathbb{R}^{2} :

$$
\alpha \in \mathbb{R} \quad \text { corresponds to } \quad \text { the line } x=\alpha \text {. }
$$

But $\mathbb{R}^{2} \sqcup \mathbb{R}$ is not a very satisfying moduli space for lines in \mathbb{R}^{2}.
We wish to have a metric, or topology, on our moduli space, that expresses which objects are near each other.
We want to glue together

Notice:

The lines passing through a fixed point $\left(x_{0}, y_{0}\right)$ form a line in the (m, c)-plane of slope $-x_{0}$.

This suggests a way to glue $\square \downarrow$

We have constructed a moduli space of lines in \mathbb{R}^{2} !

Two distinct points in \mathbb{R}^{2} determine a unique line. now translates to

Two distinct lines in the (m, c)-plane meet at a unique point.

Two distinct points in \mathbb{R}^{2} determine a unique line. now translates to

Two distinct lines in the (m, c)-plane meet at a unique point.

1. Intersections in the moduli space encode incidence problems.

Two distinct points in \mathbb{R}^{2} determine a unique line. now translates to

Two distinct lines in the (m, c)-plane meet at a unique point.

1. Intersections in the moduli space encode incidence problems.
2. This is one reason that compactifications of moduli spaces are helpful.

Two distinct points in \mathbb{R}^{2} determine a unique line.
now translates to

Two distinct lines in the (m, c)-plane meet at a unique point.

1. Intersections in the moduli space encode incidence problems.
2. This is one reason that compactifications of moduli spaces are helpful.
3. Another reason to study compactifications: they can tell you about the topology of the space being compactified!

Part II. \mathcal{M}_{g}

A Riemann surface is a compact, connected complex manifold of dimension 1.

Riemann surfaces are classified, first and foremost, by their genus (number of handles):

Riemann surfaces are classified, first and foremost, by their genus (number of handles):

They are a meeting point for many different kinds of geometry (and algebra, combinatorics, physics...): we have identifications

1. isomorphism classes of Riemann surfaces of genus g
2. isomorphism classes of smooth, projective algebraic curves of genus g
3. isometry classes of hyperbolic surfaces of genus g
when $g \geq 2$.

The main character:

$$
\mathcal{M}_{g}
$$

the moduli space of Riemann surfaces of genus g, for $g \geq 2$. \mathcal{M}_{g} is a (variety/scheme/orbifold/Deligne-Mumford stack), irreducible of complex dimension $3 g-3$.

It was known in broad strokes already to Riemann, who coined the term moduli, in a paper in 1857.

But the formal construction followed much later, even after decades of studying \mathcal{M}_{g} with the assumption that it could really be constructed!
(Grothendieck, Deligne-Mumford 60s)

Getting a feel for \mathcal{M}_{g}.
First recall: n-dimensional projective space is

$$
\mathbb{P}^{n}=\left\{\text { lines in } \mathbb{C}^{n+1} \text { through } 0\right\}=\left\{\left(z_{0}: \cdots: z_{n}\right): z_{i} \text { not all } 0\right\} .
$$

Getting a feel for \mathcal{M}_{g}.
First recall: n-dimensional projective space is $\mathbb{P}^{n}=\left\{\right.$ lines in \mathbb{C}^{n+1} through 0$\}=\left\{\left(z_{0}: \cdots: z_{n}\right): z_{i}\right.$ not all 0$\}$.
\mathcal{M}_{2} : every genus 2 curve admits a unique hyperelliptic involution...

and is determined by the arrangement of the 6 branch points on \mathbb{P}^{1}, up to isomorphism.

$$
\begin{aligned}
\mathcal{M}_{2}=\left[\mathcal{M}_{0,6} / S_{6}\right] & =\operatorname{UConf}\left(\mathbb{P}^{1}\right) / \operatorname{Aut} \mathbb{P}^{1} \\
\operatorname{dim} \mathcal{M}_{2} & =6-3=3 .
\end{aligned}
$$

Getting a feel for \mathcal{M}_{g}.
\mathcal{M}_{3} : all (nonhyperelliptic) curves of genus 3 arise as smooth plane quartics.

A smooth plane quartic curve is the set of solutions in \mathbb{P}^{2} to a homogeneous polynomial of degree 4 in x, y, z

$$
a_{4,0,0} x^{4}+a_{3,1,0} x^{3} y+\cdots+a_{0,0,4} z^{4}=0
$$

Getting a feel for \mathcal{M}_{g}.
\mathcal{M}_{3} : all (nonhyperelliptic) curves of genus 3 arise as smooth plane quartics.

A smooth plane quartic curve is the set of solutions in \mathbb{P}^{2} to a homogeneous polynomial of degree 4 in x, y, z

$$
a_{4,0,0} x^{4}+a_{3,1,0} x^{3} y+\cdots+a_{0,0,4} z^{4}=0
$$

The moduli space of smooth plane quartic curves is

$$
\mathbb{P}^{14}-\Delta
$$

where Δ is the discriminantal hypersurface, parametrizing those $\left(a_{4,0,0}: \cdots: a_{0,0,4}\right) \in \mathbb{P}^{14}$ that define singular plane curves.

$$
\begin{gathered}
\mathcal{M}_{3} \leftarrow-\left(\mathbb{P}^{14}-\Delta\right) / \operatorname{Aut}\left(\mathbb{P}^{2}\right) \\
\operatorname{dim} \mathcal{M}_{3}=14-8=6 .
\end{gathered}
$$

\mathcal{M}_{2}. Image: Alicia Harper

In this talk, I'll discuss the rational cohomology of \mathcal{M}_{g}. For $i \geq 0$,

$$
H^{i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)
$$

is a finite-dimensional vector space over \mathbb{Q}, measuring "the space of holes in dimension i."

In this talk, I'll discuss the rational cohomology of \mathcal{M}_{g}. For $i \geq 0$,

$$
H^{i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)
$$

is a finite-dimensional vector space over \mathbb{Q}, measuring "the space of holes in dimension i."

Equivalently, $\mathcal{M}_{g}=\mathcal{T}_{g} / \operatorname{Mod}_{g}$ is the quotient of Teichmüller space by the mapping class group $\operatorname{Mod}_{\mathrm{g}}$. Therefore we equivalently study the cohomology of the mapping class group.

In this talk, I'll discuss the rational cohomology of \mathcal{M}_{g}. For $i \geq 0$,

$$
H^{i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)
$$

is a finite-dimensional vector space over \mathbb{Q}, measuring "the space of holes in dimension i."

Equivalently, $\mathcal{M}_{g}=\mathcal{T}_{g} / \operatorname{Mod}_{g}$ is the quotient of Teichmüller space by the mapping class group $\operatorname{Mod}_{\mathrm{g}}$. Therefore we equivalently study the cohomology of the mapping class group.

Roughly speaking, the cohomology of \mathcal{M}_{g}, and its compactifications, is studied in analogy to arithmetic groups (Borel etc.), and to Grassmannians (Littlewood-Richardson etc.)

How much cohomology is there?

Harer-Zagier 1986: Asymptotically,

$$
\chi\left(\mathcal{M}_{g}\right)=\operatorname{dim} H^{0}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)-\operatorname{dim} H^{1}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)+\ldots
$$

grows superexponentially in g :

$$
(-1)^{g+1} \chi\left(\mathcal{M}_{g}\right) \sim g^{2 g} .
$$

How much cohomology is there?

Harer-Zagier 1986: Asymptotically,

$$
\chi\left(\mathcal{M}_{g}\right)=\operatorname{dim} H^{0}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)-\operatorname{dim} H^{1}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)+\ldots
$$

grows superexponentially in g :

$$
(-1)^{g+1} \chi\left(\mathcal{M}_{g}\right) \sim g^{2 g} .
$$

But we know only a vanishingly small proportion of the cohomology explicitly.

In what range does cohomology appear?

- In degrees at most $4 g-6$ (Harer, Church-Farb-Putman, and Morita-Sakasai-Suzuki).
- Moreover, conjectures in the literature had implied that $H^{4 g-6-i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)=0$ for any fixed $i \geq 0$, for $g \gg 0$. (Church-Farb-Putman 2012, and Kontsevich 1993)

In what range does cohomology appear?

- In degrees at most $4 g-6$ (Harer, Church-Farb-Putman, and Morita-Sakasai-Suzuki).
- Moreover, conjectures in the literature had implied that $H^{4 g-6-i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)=0$ for any fixed $i \geq 0$, for $g \gg 0$. (Church-Farb-Putman 2012, and Kontsevich 1993)

Our theorem

$$
\operatorname{dim} H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbb{Q}\right) \gg 1.32^{g}
$$

finds cohomology in highest possible degree, and refutes both those conjectures.

Ingredients for proof that

$$
H^{4 g-6}\left(\mathcal{M}_{g} ; \mathbb{Q}\right) \gg 1.32^{g}
$$

1. The Deligne-Mumford compactification $\overline{\mathcal{M}_{g}}$ of \mathcal{M}_{g}.
2. Tropical geometry/tropical moduli spaces of curves.
3. Kontsevich's graph complex and theorems of Willwacher from quantum algebra.
4. The Deligne-Mumford compactification $\overline{\mathcal{M}_{g}}$ of \mathcal{M}_{g}.
\mathcal{M}_{g} is not compact. In an influential 1969 paper, Deligne-Mumford constructed a compactification $\mathcal{M}_{g} \subset \overline{\mathcal{M}_{g}}$, the moduli space of stable curves of genus g.

Definition. A genus g stable curve is a smooth or nodal complex algebraic curve, of arithmetic genus g, having only finitely many automorphisms.

Stable curves come in finitely many topological types, equivalently dual graphs.

$$
\frac{8888888}{7}
$$

2. Tropical geometry/tropical moduli spaces of curves.

Tropical geometry is a modern degeneration technique in algebraic geometry - one in which the limiting object is entirely combinatorial.

To get the flavor, consider the family of projective plane quartics C_{t}, parametrized by $t \in \mathbb{C}$, defined by the equation

$$
\begin{equation*}
t\left(x^{4}+y^{4}+z^{4}\right)+x y z(x+y+z)=0 . \tag{1}
\end{equation*}
$$

When $t \rightarrow 0$, the curve degenerates to the zero locus of

$$
x y z(x+y+z)=0 .
$$

Figure: Left: \mathcal{C}_{0}.

Right: $\operatorname{Trop}\left(\mathcal{C}_{0}\right)$.

Table: Cartoons of abstract/embedded algebraic/tropical curves of genus 3.

The main input from tropical geometry for today is the tropical moduli space of curves Δ_{g}.
(Brannetti-Melo-Viviani, Caporaso, Gathmann-Markwig, Culler-Vogtmann,...)

Every stable curve in $\overline{\mathcal{M}_{g}}$ has a vertex-weighted dual graph.

Every stable curve in $\overline{\mathcal{M}_{g}}$ has a vertex-weighted dual graph.

Definition. A tropical curve of genus g is a vertex-weighted dual graph G arising in this way, together with any metrization $\ell: E(G) \rightarrow \mathbb{R}_{>0}$ with total length 1 .

Definition. Let $\boldsymbol{\Delta}_{\mathrm{g}}$ denote the moduli space of genus g normalized tropical curves.

Remark: The tropical moduli space Δ_{g} arises in several different geometric contexts.

- the quotient of Harvey's curve complex on S_{g} by Mod_{g}
- the simplicial completion of $X_{g} /$ Out F_{g}, where X_{g} denotes Culler-Vogtmann Outer Space
- up to homotopy (CGP), the one point compactification $\left(X_{g} / \text { Out } F_{g}\right)^{*}$

Figure 2: Outer space in rank 2
(Vogtmann "What is Outer Space?" AMS Notices August 2008)

Figure 2: Outer space in rank 2

Deligne's theory of mixed Hodge structures implies:

$$
H^{2 d-i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right) \rightarrow H_{i-1}\left(\Delta_{g} ; \mathbb{Q}\right)
$$

The cohomology groups of \mathcal{M}_{g} surject onto the homology groups of Δ_{g}, with degree shift.

The main technical result of CGP gives an isomorphism between the homology of Δ_{g} to the homology of Kontsevich's 1994 graph complex

$$
\cdots \rightarrow G_{i}^{g} \rightarrow G_{i-1}^{g} \rightarrow G_{i-2}^{g} \rightarrow \cdots
$$

Here G_{i}^{g} are finite dimensional vector spaces spanned by certain graphs of genus g with i edges.

Deligne's theory of mixed Hodge structures implies:

$$
H^{2 d-i}\left(\mathcal{M}_{g} ; \mathbb{Q}\right) \rightarrow H_{i-1}\left(\Delta_{g} ; \mathbb{Q}\right)
$$

The cohomology groups of \mathcal{M}_{g} surject onto the homology groups of Δ_{g}, with degree shift.

The main technical result of CGP gives an isomorphism between the homology of Δ_{g} to the homology of Kontsevich's 1994 graph complex

$$
\cdots \rightarrow G_{i}^{g} \rightarrow G_{i-1}^{g} \rightarrow G_{i-2}^{g} \rightarrow \cdots
$$

Here G_{i}^{g} are finite dimensional vector spaces spanned by certain graphs of genus g with i edges.

Willwacher (2015) and F. Brown (2012) prove remarkable theorems about the graph complex, coming from quantum algebra/number theory, from which our theorem is deduced.

Even though computer calculations don't appear in our paper, they were crucial to finding the right theorem.

Figure: The graphs appearing in the unique nonzero reduced homology class in Δ_{6}, with unsigned coefficients $2,3,6,3,4$.

Habitat. While simplest to define, Basic Graph Cohomology does not appear in nature.
Results. At present, very little is known about ${ }^{6} H_{n}^{k}$. The only dimensions we have computed are in Table 1. The data in that table is displayed using the folowing format for each pair (n, k) :

$$
\begin{array}{|lr}
\hline \operatorname{dim}^{b c} H_{n}^{k} & \operatorname{dim}^{b c} C_{n}^{k} \tag{2}\\
\left.\operatorname{dim} \operatorname{ker} d\right|_{b_{0}^{k}} ^{k} /\left.\operatorname{dim} \operatorname{dim} d\right|_{a_{0} C_{n}^{k-1}} \\
\hline
\end{array}
$$

Example 3.13. ${ }^{\text {bc }} H_{5}^{0}$ is generated (over \mathbb{Q}) by

Problems. ${ }^{b} H$ is simpler than its twist H, defined below. Why is it that H is related to so many things while ${ }^{b} H$ is related to none? What is ${ }^{b} H$?
(Bar-Natan-McKay 2001 "Graph cohomology")

Figure: The graphs appearing in the unique nonzero reduced homology class in Δ_{6}, with unsigned coefficients $2,3,6,3,4$.

Example 3.13. ${ }^{b c} H_{5}^{0}$ is generated (over \mathbb{Q}) by

Problems. ${ }^{b} H$ is simpler than its twist H, defined below. Why is it that H is related to so many things while ${ }^{b} H$ is related to none? What is ${ }^{b} H$?

GRAPH COHOMOLOGY - AN OVERVIEW AND SOME COMPUTATIONS

	$n=4$	$n=5$	$n=6$	$k=7$	$n=8$	$n=9$
$k=0$	0	17	029	0214	02496	130307
		1/0	$0 / 0$	$0 / 0$	0 / 0	$1 / 0$
$k=1$	01	013	0109	01261	? 16134	? 226296
	0/0	$6 / 6$	29/29	214/214	?/ 2496	? / 30306
$k=2$	12	012	0186	1 2926	?	?
	2/1	$7 / 7$	80/80	1048/1047		
$k=3$		$\begin{aligned} & 06 \\ & 5 / 5 \end{aligned}$	$\left\|\begin{array}{lr} \hline \mathbf{0} & 170 \\ 106 / 106 \end{array}\right\|$	$\begin{array}{lr} \mathbf{0} & 3491 \\ 1878 / 1878 \end{array}$?	?
$k=4$		$\begin{aligned} & 01 \\ & 1 / 1 \end{aligned}$	$\begin{aligned} & 1 \quad 75 \\ & 65 / 64 \end{aligned}$	$\begin{array}{lr} \hline 0 & 2328 \\ 1613 / 1613 \end{array}$?	?
$k=5$			$\begin{array}{ll} 0 & 10 \\ 10 / 10 \end{array}$	$\begin{aligned} & 0 \quad 879 \\ & 716 / 715 \end{aligned}$	$\begin{aligned} & ? 38906 \\ & 27533 / ? \end{aligned}$?
$k=6$				$\begin{array}{lr} \hline 0 & 179 \\ 163 / 163 \\ \hline \end{array}$	$\begin{array}{\|lr} \hline \mathbf{1} & 13867 \\ 11374 / 11373 \end{array}$?
$k=7$				$\begin{array}{lr} 0 & 16 \\ 16 / 16 \end{array}$	$\begin{array}{lr} \hline 0 & 2742 \\ 2493 / 2493 \\ \hline \end{array}$?
$k=8$					$\begin{array}{lr} \hline \mathbf{0} & 262 \\ 249 / 249 \\ \hline \end{array}$?
$k=9$					$\begin{array}{lr} \hline \mathbf{0} \quad 14 \\ 13 / 13 \end{array}$?
$k=10$					$\begin{aligned} & 0 \\ & \hline \end{aligned}$?

(Bar-Natan-McKay 2001 "Graph cohomology")

What about the results I showed you for $H^{*}\left(\mathcal{A}_{g} ; \mathbb{Q}\right)$? This is the moduli space of prinicpally polarized abelian varieties of dimension g.

What about the results I showed you for $H^{*}\left(\mathcal{A}_{g} ; \mathbb{Q}\right)$? This is the moduli space of prinicpally polarized abelian varieties of dimension g.

Equivalently, since $\mathcal{A}_{g}=\mathbb{H}_{g} / \operatorname{Sp}(2 g, \mathbb{Z})$,

$$
H^{*}\left(\mathcal{A}_{g} ; \mathbb{Q}\right) \cong H^{*}(\operatorname{Sp}(2 g, \mathbb{Z}) ; \mathbb{Q})
$$

Ingredients for proof:

1. Compactification
2. Tropicalization
3. Extraction of a combinatorial chain complex

Ingredients for proof:

1. Toroidal compactifications of \mathcal{A}_{g} (Ash-Mumford-Rapaport-Tai), specifically the perfect cone compactification.
2. Tropical moduli spaces of abelian varieties $A_{g}^{\text {trop }}$. (Brannetti-Melo-Viviani, Mikhalkin-Zharkov)
3. The perfect cone complex $P_{\bullet}^{(g)}$ (BBCMMW).

A brief remark on $P_{\bullet}^{(g)}$. The moduli space $A_{g}^{\text {trop }}$ has a stratification

$$
A_{g}^{\text {trop }}=Q_{0} \sqcup Q_{1} \sqcup \cdots \sqcup Q_{g}
$$

where $Q_{h}=\{$ positive definite $h \times h$ matrices $\} / \mathrm{GL}_{h}(\mathbb{Z})$.

A brief remark on $P_{\bullet}^{(g)}$. The moduli space $A_{g}^{\text {trop }}$ has a stratification

$$
A_{g}^{\text {trop }}=Q_{0} \sqcup Q_{1} \sqcup \cdots \sqcup Q_{g}
$$

where $Q_{h}=\{$ positive definite $h \times h$ matrices $\} / \mathrm{GL}_{h}(\mathbb{Z})$.

One of the main technical theorems of BBCMMW constructs a short exact sequence

$$
0 \rightarrow P_{\bullet}^{(g-1)} \rightarrow P_{\bullet}^{(g)} \rightarrow V_{\bullet}^{(g)} \rightarrow 0
$$

where $V_{\bullet}^{(g)}$ is the Voronoi chain complex.

One of the main technical theorems of BBCMMW constructs a short exact sequence

$$
0 \rightarrow P_{\bullet}^{(g-1)} \rightarrow P_{\bullet}^{(g)} \rightarrow V_{\bullet}^{(g)} \rightarrow 0
$$

where $V_{\bullet}^{(g)}$ is the Voronoi chain complex.
$V_{\bullet}^{(g)}$ was studied/computed by Elbaz-Vincent-Gangl-Soulé. Our computations use the computations of EVGS as input.

Thank you! (Image: A. Harper)

