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I. Background: Arithmetic of Algebraic Curves



Arithmetic of algebraic curves

X : a smooth algebraic curve of genus g defined over Q.

For example, given by a polynomial equation

f (x , y) = 0

of degree d with rational coefficients, where

g = (d − 1)(d − 2)/2.

Diophantine geometry studies the set X (Q) of rational solutions
from a geometric point of view.

Structure is quite different in the three cases:

g = 0, spherical geometry (positive curvature);
g = 1, flat geometry (zero curvature);
g ≥ 2, hyperbolic geometry (negative curvature).



Arithmetic of algebraic curves: g = 0, d = 2

Even now (after millennia of studying these problems), g = 0 is the
only case that is completely understood.

For g = 0, techniques reduce to class field theory and algebraic
geometry: local-to-global methods, generation of solutions via
sweeping lines, etc.

Idea is to study Q-solutions by considering the geometry of
solutions in various completions, the local fields

R,Q2,Q3, . . . ,Q691, . . . ,
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Arithmetic of algebraic curves: g = 0

Local-to-global methods sometimes allow us to ‘globalise’. For
example,

37x2 + 59y2 − 67 = 0

has a Q-solution if and only if it has a solution in each of
R,Q2,Q37,Q59,Q67, a criterion that can be effectively
implemented. This is called the Hasse principle.

If the existence of a solution is guaranteed, it can be found by an
exhaustive search. From one solution, there is a method for
parametrising all others: for example, from (0,−1), generate
solutions

(
t2 − 1
t2 + 1

,
2t

t2 + 1
)

to x2 + y2 = 1.



Arithmetic of algebraic curves: g = 0

Figure: Method of sweeping lines

Sweep through the circle with all lines with rational slope going
through the point (−1, 0).



Arithmetic of algebraic curves: g = 0

A key ingredient here is a successful study of the inclusion

X (Q) ⊂
∏

X (Qp)

coming from reciprocity laws (class field theory).



Arithmetic of algebraic curves: g = 1 (d = 3)

X (Q) = φ, non-empty finite, infinite, all are possible.

Hasse principle fails:

3x3 + 4y3 + 5 = 0

has points in Qv for all v , but no rational points.

Even when X (Q) 6= φ, difficult to describe the full set.

But fixing an origin O ∈ X (Q) gives X (Q) the structure of an
abelian group via the chord-and-tangent method.



Arithmetic of algebraic curves: g = 1 (d = 3)

(Mordell)
X (Q) ' X (Q)tor × Zr .

Here, r is called the rank of the curve and X (Q)tor is a finite
effectively computable abelian group.



Arithmetic of algebraic curves: g = 1

To compute X (Q)tor , write

X := {y2 = x3 + ax + b} ∪ {∞}

(a, b ∈ Z).

Then (x , y) ∈ X (Q)tor ⇒ x , y are integral and

y2|(4a3 + 27b2).



Arithmetic of algebraic curves: g = 1

However, the algorithmic computation of the rank and a full set of
generators for X (Q) is very difficult, and is the subject of the
conjecture of Birch and Swinnerton-Dyer.

In practice, it is often possible to compute these. For example, for

y2 = x3 − 2,

Sage will give you r = 1 and the point (3, 5) as generator.

The algorithm *uses* the BSD conjecture.



Arithmetic of algebraic curves: g = 1
Note that

2(3, 5) = (129/100,−383/1000)

3(3, 5) = (164323/29241,−66234835/5000211)

4(3, 5) = (2340922881/58675600, 113259286337279/449455096000)

Figure: Denominators of N(3, 5)



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)
X (Q) is always finite (Mordell conjecture as proved by Faltings)

However, *very* difficult to compute: consider

xn + yn = 1

for n ≥ 4.

Sometime easy, such as

x4 + y4 = −1.

However, when there isn’t an obvious reason for non-existence, e.g.,
there already is one solution, then it’s hard to know when you have
the full list. For example,

y3 = x6 + 23x5 + 37x4 + 691x3 − 631204x2 + 5169373941

obviously has the solution (1, 1729), but are there any others?



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

Effective Mordell problem:

Find a terminating algorithm: X 7→ X (Q)

The Effective Mordell conjecture (Szpiro, Vojta, ABC, ...)
makes this precise using (archimedean) height inequalities. That is,
it proposes that you can give a priori bounds on the size of
numerators and denominators of solutions.

Will describe today an approach to this problem using the
(non-archimedean) arithmetic geometry of principal bundles.



Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

Basic idea:
X (Q) -

∏
v

X (Qv )

M
? loc

-
∏
v

Mv

?

”X (Q) = [
∏
v

X (Qv )] ∩M”



II. Arithmetic Principal Bundles



Principal Bundles

Basic case:

R group, P set with simple transitive R-action

P × G - P

Thus, choice of any z ∈ P induces a bijection

R ' P

r 7→ zr .

All objects could have more structure, for example, a topology.



Principal Bundles

Could also have a family of such things over a space M:

f : P - M

a fibre bundle with right action of R such that locally over
sufficiently small open U ⊂ M,

PU = f −1(U)

is isomorphic to R × U.

That is, a choice of a section s : U - PU induces an
isomorphism

R × U ' PU

(r , u) 7→ s(u)r .



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles

Example:

R = Zp(1) := lim←−µpn ,

where µpn ⊂ K̄ is the group of pn-th roots of 1.

Thus,
Zp(1) = {(ζn)n},

where
ζp

n

n = 1; ζp
m

nm = ζn.

As a group,
Zp(1) ' Zp = lim←−

n

Z/pn,

but there is a continuous action of GK .



Arithmetic principal bundles: (GK ,R ,P)

A principal R-bundle over K is a topological space P with
compatible continuous actions of GK (left) and R (right, simply
transitive):

P × R - P;

GK × P - P;

g(zr) = g(z)g(r)

for g ∈ GK , z ∈ P , r ∈ R .

Note that P is trivial, i.e., ∼= R , exactly when there is a fixed point
z ∈ PGK :

R ∼= z × R ∼= P.



Arithmetic principal bundles

Example:

Given any x ∈ K ∗, get principal Zp(1)-bundle

P(x) := {(yn)n | yp
n

n = x , yp
m

nm = yn.}

over K .

P(x) is trivial iff x admits a pn-th root in K for all n.

For example, when K = C, P(x) is always trivial.

When K = Q, P(x) is trivial iff x = 1 or p is odd and x = −1.

For K = R, and p odd, P(x) is trivial for all x .

For K = R and p = 2, P(x) is trivial iff x > 0.



Arithmetic principal bundles: moduli spaces
Given a principal R-bundle P over K , choose z ∈ P . This
determines a continuous function cP : GK

- R via

g(z) = zcP(g).

It satisfies the ‘cocycle’ condition

cP(g1g2) = cP(g1)g1(cP(g2)),

defining the set Z 1(G ,R).

We get a well-defined class in non-abelian cohomology

[cP ] ∈ R\Z 1(GK ,R) =: H1(GK ,R) = H1(K ,R),

where the R-action is defined by

c r (g) = rc(g)g(r−1).



Arithmetic principal bundles: moduli spaces

This induces a bijection

{Isomorphism classes of principal R-bundles over K} ∼= H1(GK ,R).

Our main concern is the geometry of non-abelian
cohomology spaces in various forms.

We will endow (refinements of) H1(GK ,R) geometric structures
that have applications to Diophantine geometry.

Remark for number theorists:

When R is (the set of Qp points of) a reductive group with trivial
K -structure:

H1(GK ,R) = R\Hom(GK ,R).

These are analytic moduli spaces of Galois representations.



Arithmetic principal bundles: moduli spaces

When K = Q, there are completions Qv and injections

Gv = Gal(Q̄v/Qv ) ⊂ - G = Gal(Q̄/Q).

giving rise to the localisation map

loc : H1(Q,R) -
∏
v

H1(Qv ,R).

and an associated local-to-global problem.

In fact, a wide range of problems in number theory rely on the
study of its image. The general principle is that the local-to-global
problem is easier to study for principal bundles than for points.



III. Diophantine principal bundles



Diophantine principal bundles

The main principal bundles of interest are

π1(M, b)

π1(M; b, x)

M is a topological space and where π1(M, b) acts on Ptop via

(p, g) 7→ pg ,

precomposing paths with loops.

In usual topology, somewhat pedantic to distinguish R and P .



Diophantine principal bundles

More structure enters when we replace fundamental groups by
Qp-unipotent completions:

U(π1(M, b)) = ”π1(M, b)⊗Qp”

P(π1(M; b, x)) = [π1(M; b, x)× U(π1(M, b))]/π1(M, b).

U(π1(M, b)) is the universal Qp-pro-algebraic group together with
a map

π1(M, b) - U.



Diophantine principal bundles

U(Γ) can be defined for any group Γ.

Examples:

U(Z) = Z⊗Qp = Qp.

If Γ is a two-step nilpotent group, then U(Γ) is a ’Heisenberg’
group that fits into an exact sequence

0 - [Γ, Γ]⊗Qp
- U(Γ) - Γab ⊗Qp

- 0.



Diophantine principal bundles
Fundamental fact of arithmetic homotopy:

If X is a variety defined over Q and b, x ∈ X (Q), then

U(X , b) = U(π1(X̄ , b)), P(X ; b, x) = P(π̂1(X̄ ; b, x))

admit compatible actions of G = Gal(Q̄/Q).

The triples
(GQ,U(X , b),P(X ; b, x))

are important concrete examples of (GK ,R,P) from the general
definitions.

We get thereby moduli spaces of principal bundles:

H1(Q,U(X , b)),

that are limits of algebraic varieties.



Diophantine principal bundles

Using these constructions, we also get a map

j : X (Q) - H1(Q,U(X , b))

given by
x 7→ [P(X ; b, x)]

For each prime v , have local versions

jv : X (Qv ) - H1(Qv ,U(X , b))

given by
x 7→ [P(X ; b, x)]

which turn out to be computable. These are period maps and
involved non-Archimedean iterated integrals. Put per :=

∏
v jv .



Diophantine principal bundles

Localization diagram:

X (Q) -
∏
v

X (Qv )

H1(Q,U(X , b))

j

?
loc
-

∏
v

H1(Qv ,U(X , b))

per

?

The lower row of this diagram is an algebraic map. In particular,
the image

loc(H1(Q,U(X , b))) ⊂
∏
v

H1(Qv ,U(X , b))

is computable in principle.



Diophantine principal bundles

X (Q) ⊂ per−1(loc[H1(Q,U(X , b))]) ⊂
∏
v

X (Qv ).

We focus then on the p-adic component:

prp :
∏
v

X (Qv ) - X (Qp).

Non-Archimedean effective Mordell Conjecture:

I. prp[per−1(loc[H1(Q,U(X , b))])] = X (Q)

II. This set is effectively computable.



Diophantine principal bundles

X (Q) -
∏
v

X (Qv )

H1(Q,U(X , b))

j

?
-

∏
v

H1(Qv ,U(X , b))

∏
v jv

?
α
- Qp

If α is an algebraic function vanishing on the image, then

α ◦
∏
v

jv

gives a defining equation for X (Q) inside
∏

v X (Qv ).



Diophantine principal bundles

To make this concretely computable, we take the projection

prp :
∏
v

X (Qv ) - X (Qp)

and try to compute

∩αprp(Z (α ◦
∏
v

jv )) ⊂ X (Qp).

This turns out to be an intersection of zero sets of p-adic iterated
integrals.



IV. Computing Rational Points



Computing rational points

For X = P1 \ {0, 1,∞}. This is equivalent to the study of unit
equations, i.e., solutions to

a + b = 1

where a and b are both invertible elements in a ring like Z[1/N].

There is an S3-action on solutions a generated by z 7→ 1− z and
z 7→ 1/z .



Computing rational points
[Dan-Cohen, Wewers]

In Z[1/2], only solutions a are

{2,−1, 1/2} ⊂ {D2(z) = 0} ∩ {D4(z) = 0},

where
D2(z) = `2(z) + (1/2) log(z) log(1− z),

D4(z) = ζ(3)`4(z) + (8/7)[log3 2/24 + `4(1/2)/ log 2] log(z)`3(z)

+[(4/21)(log3 2/24 + `4(1/2)/ log 2) + ζ(3)/24] log3(z) log(1− z),

and

`k(z) =
∞∑
n=1

zn

nk
.

These equations all occur in the field of p-adic integers Zp for some
p. Numerically, the inclusion appears to be an equality.



Computing rational points

[Alex Betts]
If ` is a prime, then solutions in Z[1/`] are in the zero set of

log(z) = 0, L2(z) = 2

and S3 permutations.

If q, ` are primes different from 3 then the solutions in Z[1/q`]
consists of −1, at most one other point, and S3 permutations.



Computing rational points

Some qualitative results:

[Coates and Kim]

axn + byn = c

for n ≥ 4 has only finitely many rational points.

Standard structural conjectures on mixed motives (generalised
BSD)
⇒ There exist many non-zero α as above.

(⇒ Faltings’s theorem.)



Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X+
s (N) = X (N)/C+

s (N),

where X (N) the the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

Theorem (BDMTV)
The modular curve

X+
s (13)

has exactly 7 rational points, consisting of the cusp and 6 CM
points.

This concludes an important chapter of a conjecture of Serre from
the 1970s:

There is an absolute constant A such that

GQ - Aut(E [p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.



Computing rational points
[Burcu Baran]

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z

−32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

Figure: The cursed curve

{(1:1:1), (1:1:2), (0:0:1), (-3:3:2), (1:1:0), (0,2:1), (-1:1:0) }



V. Why Diophantine Equations?



Why Diophantine Equations?

In arithmetic geometry, the basic number systems are finitely
generated rings:

Z[1/N][α1, α2, α3, . . . , αn].

The αi could be algebraic numbers like
√
2,
√
691, e2πi/m, or

transcendental numbers like π, e, e
√

2.

These are number systems with intrinsic discreteness.

Given a finitely-generated ring A, arithmetic geometers associate to
it a geometric space called the spectrum of A:

Spec(A).

An arithmetic scheme is glued out of finitely many such spectra.
These are the main space of study in arithmetic geometry.



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

All objects in algebraic geometry have an underlying arithmetic
scheme:

f (x1, x2, . . . , xn) = 0↔ Spec(R[x1, x2, . . . , xn]/(f )) =: X

where R is the ring generated by the coefficients of f .

So we can look for solutions in any ring T ⊃ R . Denote by X (T )
the solutions in T .

[In fact, Faltings’s theorem implies that when X is a curve of genus
at least two, X (T ) is finite for any finitely-generated T .]



Why Diophantine Equations?

Ubiquity of arithmetic schemes:

If M is compact manifold, then it is diffeomorphic to X (R), where
X is an arithmetic scheme. [Nash-Tognoli]

If Σ is a compact Riemann surface, then it is conformally equivalent
to X (C), where X is an arithmetic scheme.

Can consider X (A) ⊂ X (C) for finitely-generated A ⊂ C.

These are natural discrete subsets of world-sheets of strings.

Similarly for
XA) ⊂ X (R) = M

and compact manifolds.



Why Diophantine Equations?

For either X (R) or X (C), have a sequence of natural discrete
approximations

X (A1) ⊂ X (A2) ⊂ X (A3) ⊂ · · · ⊂ X (R) (X (C))

as we run over finitely-generated number systems Ai .

Is this a ’practical’ approximation?

First need to know how to compute the X (Ai ). If the
computational problem were easy, we might consider applications
more freely.



Why Diophantine Equations?

The study of classical Diophantine equations is the
beginning of the theory of maps between arithmetic
schemes:

X (A) = {Spec(A) - X}


