# Some Recent Progress on Diophantine Equations In Two-Variables 

Minhyong Kim<br>University of Warwick

Colloquium
October, 2020
I. Background: Arithmetic of Algebraic Curves

## Arithmetic of algebraic curves

$X$ : a smooth algebraic curve of genus $g$ defined over $\mathbb{Q}$.
For example, given by a polynomial equation

$$
f(x, y)=0
$$

of degree $d$ with rational coefficients, where

$$
g=(d-1)(d-2) / 2
$$

Diophantine geometry studies the set $X(\mathbb{Q})$ of rational solutions from a geometric point of view.

Structure is quite different in the three cases:
$g=0$, spherical geometry (positive curvature);
$g=1$, flat geometry (zero curvature);
$g \geq 2$, hyperbolic geometry (negative curvature).

## Arithmetic of algebraic curves: $g=0, d=2$

Even now (after millennia of studying these problems), $g=0$ is the only case that is completely understood.

For $g=0$, techniques reduce to class field theory and algebraic geometry: local-to-global methods, generation of solutions via sweeping lines, etc.

Idea is to study $\mathbb{Q}$-solutions by considering the geometry of solutions in various completions, the local fields

$$
\mathbb{R}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \ldots, \mathbb{Q}_{691}, \ldots
$$

## Local-to-global methods



## Arithmetic of algebraic curves: $g=0$

Local-to-global methods sometimes allow us to 'globalise'. For example,

$$
37 x^{2}+59 y^{2}-67=0
$$

has a $\mathbb{Q}$-solution if and only if it has a solution in each of $\mathbb{R}, \mathbb{Q}_{2}, \mathbb{Q}_{37}, \mathbb{Q}_{59}, \mathbb{Q}_{67}$, a criterion that can be effectively implemented. This is called the Hasse principle.
If the existence of a solution is guaranteed, it can be found by an exhaustive search. From one solution, there is a method for parametrising all others: for example, from $(0,-1)$, generate solutions

$$
\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)
$$

to $x^{2}+y^{2}=1$.

Arithmetic of algebraic curves: $g=0$


Figure: Method of sweeping lines

Sweep through the circle with all lines with rational slope going through the point $(-1,0)$.

## Arithmetic of algebraic curves: $g=0$

A key ingredient here is a successful study of the inclusion

$$
X(\mathbb{Q}) \subset \prod X\left(\mathbb{Q}_{p}\right)
$$

coming from reciprocity laws (class field theory).

Arithmetic of algebraic curves: $g=1(d=3)$
$X(\mathbb{Q})=\phi$, non-empty finite, infinite, all are possible.
Hasse principle fails:

$$
3 x^{3}+4 y^{3}+5=0
$$

has points in $\mathbb{Q}_{v}$ for all $v$, but no rational points.
Even when $X(\mathbb{Q}) \neq \phi$, difficult to describe the full set.
But fixing an origin $O \in X(\mathbb{Q})$ gives $X(\mathbb{Q})$ the structure of an abelian group via the chord-and-tangent method.

Arithmetic of algebraic curves: $g=1(d=3)$

(Mordell)

$$
X(\mathbb{Q}) \simeq X(\mathbb{Q})_{t o r} \times \mathbb{Z}^{r}
$$

Here, $r$ is called the rank of the curve and $X(\mathbb{Q})_{\text {tor }}$ is a finite effectively computable abelian group.

Arithmetic of algebraic curves: $g=1$

To compute $X(\mathbb{Q})_{\text {tor }}$, write

$$
X:=\left\{y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}
$$

$(a, b \in \mathbb{Z})$.
Then $(x, y) \in X(\mathbb{Q})_{\text {tor }} \Rightarrow x, y$ are integral and

$$
y^{2} \mid\left(4 a^{3}+27 b^{2}\right)
$$

## Arithmetic of algebraic curves: $g=1$

However, the algorithmic computation of the rank and a full set of generators for $X(\mathbb{Q})$ is very difficult, and is the subject of the conjecture of Birch and Swinnerton-Dyer.

In practice, it is often possible to compute these. For example, for

$$
y^{2}=x^{3}-2
$$

Sage will give you $r=1$ and the point $(3,5)$ as generator.
The algorithm *uses* the BSD conjecture.

Arithmetic of algebraic curves: $g=1$
Note that

$$
\begin{gathered}
2(3,5)=(129 / 100,-383 / 1000) \\
3(3,5)=(164323 / 29241,-66234835 / 5000211) \\
4(3,5)=(2340922881 / 58675600,113259286337279 / 449455096000)
\end{gathered}
$$

ARs)





家

Th Ma
(
2


FTSTI
20

Mablus.

т4.

Figure: Denominators of $N(3,5)$

## Arithmetic of algebraic curves: $g \geq 2(d \geq 4)$

$X(\mathbb{Q})$ is always finite (Mordell conjecture as proved by Faltings)
However, *very* difficult to compute: consider

$$
x^{n}+y^{n}=1
$$

for $n \geq 4$.
Sometime easy, such as

$$
x^{4}+y^{4}=-1
$$

However, when there isn't an obvious reason for non-existence, e.g., there already is one solution, then it's hard to know when you have the full list. For example,

$$
y^{3}=x^{6}+23 x^{5}+37 x^{4}+691 x^{3}-631204 x^{2}+5169373941
$$

obviously has the solution $(1,1729)$, but are there any others?

## Arithmetic of algebraic curves: $g \geq 2(d \geq 4)$

Effective Mordell problem:

$$
\text { Find a terminating algorithm: } X \mapsto X(\mathbb{Q})
$$

The Effective Mordell conjecture (Szpiro, Vojta, ABC, ...) makes this precise using (archimedean) height inequalities. That is, it proposes that you can give a priori bounds on the size of numerators and denominators of solutions.

Will describe today an approach to this problem using the (non-archimedean) arithmetic geometry of principal bundles.

Arithmetic of algebraic curves: $g \geq 2(d \geq 4)$

Basic idea:

$$
\begin{aligned}
& X(\mathbb{Q}) \longrightarrow \prod_{v} X\left(\mathbb{Q}_{v}\right) \\
& \\
& \mathcal{M} \xrightarrow{\text { loc }} \prod_{v} \mathcal{M}_{v}
\end{aligned}
$$

$$
" X(\mathbb{Q})=\left[\prod_{v} X\left(\mathbb{Q}_{v}\right)\right] \cap \mathcal{M} "
$$

# II. Arithmetic Principal Bundles 

## Principal Bundles

Basic case:
$R$ group, $P$ set with simple transitive $R$-action

$$
P \times G \longrightarrow P
$$

Thus, choice of any $z \in P$ induces a bijection

$$
\begin{aligned}
& R \simeq P \\
& r \mapsto z r
\end{aligned}
$$

All objects could have more structure, for example, a topology.

## Principal Bundles

Could also have a family of such things over a space $M$ :

$$
f: P \longrightarrow M
$$

a fibre bundle with right action of $R$ such that locally over sufficiently small open $U \subset M$,

$$
P_{U}=f^{-1}(U)
$$

is isomorphic to $R \times U$.
That is, a choice of a section $s: U \longrightarrow P_{U}$ induces an isomorphism

$$
\begin{gathered}
R \times U \simeq P_{U} \\
(r, u) \mapsto s(u) r
\end{gathered}
$$

## Arithmetic principal bundles: $\left(G_{K}, R, P\right)$

$K$ : field of characteristic zero.
$G_{K}=\operatorname{Gal}(\bar{K} / K)$ : absolute Galois group of $K$. Topological group with open subgroups given by $\operatorname{Gal}(\bar{K} / L)$ for finite field extensions $L / K$ in $\bar{K}$.

A group over $K$ is a topological group $R$ with a continuous action of $G_{K}$ by group automorphisms:

$$
G_{K} \times R \longrightarrow R
$$

In an abstract framework, one can view $R$ as a family of groups over the space $\operatorname{Spec}(K)$.

Example:

$$
R=A(\bar{K})
$$

where $A$ is an algebraic group defined over $K$, e.g., $G L_{n}$ or an abelian variety. Here, $R$ has the discrete topology.

## Arithmetic principal bundles

Example:

$$
R=\mathbb{Z}_{p}(1):=\underset{\leftrightarrows}{\lim } \mu_{p^{n}},
$$

where $\mu_{p^{n}} \subset \bar{K}$ is the group of $p^{n}$-th roots of 1 .
Thus,

$$
\mathbb{Z}_{p}(1)=\left\{\left(\zeta_{n}\right)_{n}\right\},
$$

where

$$
\zeta_{n}^{p^{n}}=1 ; \quad \zeta_{n m}^{p^{m}}=\zeta_{n} .
$$

As a group,

$$
\mathbb{Z}_{p}(1) \simeq \mathbb{Z}_{p}={\underset{\check{n}}{\lim } \mathbb{Z} / p^{n}, ., ~}_{\text {, }}
$$

but there is a continuous action of $G_{K}$.

## Arithmetic principal bundles: $\left(G_{K}, R, P\right)$

A principal $R$-bundle over $K$ is a topological space $P$ with compatible continuous actions of $G_{K}$ (left) and $R$ (right, simply transitive):

$$
\begin{gathered}
P \times R \longrightarrow P \\
G_{K} \times P \longrightarrow P \\
g(z r)=g(z) g(r)
\end{gathered}
$$

for $g \in G_{K}, z \in P, r \in R$.
Note that $P$ is trivial, i.e., $\cong R$, exactly when there is a fixed point $z \in P^{G_{K}}$ :

$$
R \cong z \times R \cong P
$$

## Arithmetic principal bundles

Example:
Given any $x \in K^{*}$, get principal $\mathbb{Z}_{p}(1)$-bundle

$$
P(x):=\left\{\left(y_{n}\right)_{n} \mid y_{n}^{p^{n}}=x, y_{n m}^{p_{m}^{m}}=y_{n} \cdot\right\}
$$

over $K$.
$P(x)$ is trivial iff $x$ admits a $p^{n}$-th root in $K$ for all $n$.
For example, when $K=\mathbb{C}, P(x)$ is always trivial.
When $K=\mathbb{Q}, P(x)$ is trivial iff $x=1$ or $p$ is odd and $x=-1$.
For $K=\mathbb{R}$, and $p$ odd, $P(x)$ is trivial for all $x$.
For $K=\mathbb{R}$ and $p=2, P(x)$ is trivial iff $x>0$.

## Arithmetic principal bundles: moduli spaces

Given a principal $R$-bundle $P$ over $K$, choose $z \in P$. This determines a continuous function $c_{P}: G_{K} \longrightarrow R$ via

$$
g(z)=z c_{P}(g)
$$

It satisfies the 'cocycle' condition

$$
c_{P}\left(g_{1} g_{2}\right)=c_{P}\left(g_{1}\right) g_{1}\left(c_{P}\left(g_{2}\right)\right)
$$

defining the set $Z^{1}(G, R)$.
We get a well-defined class in non-abelian cohomology

$$
\left[c_{P}\right] \in R \backslash Z^{1}\left(G_{K}, R\right)=: H^{1}\left(G_{K}, R\right)=H^{1}(K, R)
$$

where the $R$-action is defined by

$$
c^{r}(g)=r c(g) g\left(r^{-1}\right)
$$

## Arithmetic principal bundles: moduli spaces

This induces a bijection
$\{$ Isomorphism classes of principal $R$-bundles over K$\} \cong H^{1}\left(G_{K}, R\right)$.

## Our main concern is the geometry of non-abelian cohomology spaces in various forms.

We will endow (refinements of) $H^{1}\left(G_{K}, R\right)$ geometric structures that have applications to Diophantine geometry.

Remark for number theorists:
When $R$ is (the set of $\mathbb{Q}_{p}$ points of) a reductive group with trivial $K$-structure:

$$
H^{1}\left(G_{K}, R\right)=R \backslash \operatorname{Hom}\left(G_{K}, R\right)
$$

These are analytic moduli spaces of Galois representations.

## Arithmetic principal bundles: moduli spaces

When $K=\mathbb{Q}$, there are completions $\mathbb{Q}_{v}$ and injections

$$
G_{v}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{v} / \mathbb{Q}_{v}\right) \hookrightarrow G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) .
$$

giving rise to the localisation map

$$
\text { loc }: H^{1}(\mathbb{Q}, R) \longrightarrow \prod_{v} H^{1}\left(\mathbb{Q}_{v}, R\right)
$$

and an associated local-to-global problem.
In fact, a wide range of problems in number theory rely on the study of its image. The general principle is that the local-to-global problem is easier to study for principal bundles than for points.

# III. Diophantine principal bundles 

## Diophantine principal bundles

The main principal bundles of interest are

$$
\begin{gathered}
\pi_{1}(M, b) \\
\pi_{1}(M ; b, x)
\end{gathered}
$$

$M$ is a topological space and where $\pi_{1}(M, b)$ acts on $P_{\text {top }}$ via

$$
(p, g) \mapsto p g,
$$

precomposing paths with loops.
In usual topology, somewhat pedantic to distinguish $R$ and $P$.

## Diophantine principal bundles

More structure enters when we replace fundamental groups by $\mathbb{Q}_{p}$-unipotent completions:

$$
\begin{gathered}
U\left(\pi_{1}(M, b)\right)=" \pi_{1}(M, b) \otimes \mathbb{Q}_{p} " \\
P\left(\pi_{1}(M ; b, x)\right)=\left[\pi_{1}(M ; b, x) \times U\left(\pi_{1}(M, b)\right)\right] / \pi_{1}(M, b) .
\end{gathered}
$$

$U\left(\pi_{1}(M, b)\right)$ is the universal $\mathbb{Q}_{p}$-pro-algebraic group together with a map

$$
\pi_{1}(M, b) \longrightarrow U
$$

## Diophantine principal bundles

$U(\Gamma)$ can be defined for any group $\Gamma$.
Examples:

$$
U(\mathbb{Z})=\mathbb{Z} \otimes \mathbb{Q}_{p}=\mathbb{Q}_{p}
$$

If $\Gamma$ is a two-step nilpotent group, then $U(\Gamma)$ is a 'Heisenberg' group that fits into an exact sequence

$$
0 \longrightarrow[\Gamma, \Gamma] \otimes \mathbb{Q}_{p} \longrightarrow U(\Gamma) \longrightarrow \Gamma^{a b} \otimes \mathbb{Q}_{p} \longrightarrow 0
$$

## Diophantine principal bundles

Fundamental fact of arithmetic homotopy:
If $X$ is a variety defined over $\mathbb{Q}$ and $b, x \in X(\mathbb{Q})$, then

$$
U(X, b)=U\left(\pi_{1}(\bar{X}, b)\right), \quad P(X ; b, x)=P\left(\hat{\pi}_{1}(\bar{X} ; b, x)\right)
$$

admit compatible actions of $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

The triples

$$
\left(G_{\mathbb{Q}}, U(X, b), P(X ; b, x)\right)
$$

are important concrete examples of $\left(G_{K}, R, P\right)$ from the general definitions.

We get thereby moduli spaces of principal bundles:

$$
H^{1}(\mathbb{Q}, U(X, b))
$$

that are limits of algebraic varieties.

## Diophantine principal bundles

Using these constructions, we also get a map

$$
j: X(\mathbb{Q}) \longrightarrow H^{1}(\mathbb{Q}, U(X, b))
$$

given by

$$
x \mapsto[P(X ; b, x)]
$$

For each prime $v$, have local versions

$$
j_{v}: X\left(\mathbb{Q}_{v}\right) \longrightarrow H^{1}\left(\mathbb{Q}_{v}, U(X, b)\right)
$$

given by

$$
x \mapsto[P(X ; b, x)]
$$

which turn out to be computable. These are period maps and involved non-Archimedean iterated integrals. Put per $:=\prod_{v} j_{v}$.

## Diophantine principal bundles

Localization diagram:


The lower row of this diagram is an algebraic map. In particular, the image

$$
\operatorname{loc}\left(H^{1}(\mathbb{Q}, U(X, b))\right) \subset \prod_{v} H^{1}\left(\mathbb{Q}_{v}, U(X, b)\right)
$$

is computable in principle.

## Diophantine principal bundles

$$
X(\mathbb{Q}) \subset \operatorname{per}^{-1}\left(\operatorname{loc}\left[H^{1}(\mathbb{Q}, U(X, b))\right]\right) \subset \prod_{V} X\left(\mathbb{Q}_{V}\right) .
$$

We focus then on the $p$-adic component:

$$
p r_{p}: \prod_{v} X\left(\mathbb{Q}_{V}\right) \longrightarrow X\left(\mathbb{Q}_{p}\right)
$$

Non-Archimedean effective Mordell Conjecture:

$$
\text { I. } \operatorname{pr}_{p}\left[\operatorname{per}^{-1}\left(\operatorname{loc}\left[H^{1}(\mathbb{Q}, U(X, b))\right]\right)\right]=X(\mathbb{Q})
$$

II. This set is effectively computable.

## Diophantine principal bundles



If $\alpha$ is an algebraic function vanishing on the image, then

$$
\alpha \circ \prod_{v} j_{v}
$$

gives a defining equation for $X(\mathbb{Q})$ inside $\prod_{v} X\left(\mathbb{Q}_{v}\right)$.

## Diophantine principal bundles

To make this concretely computable, we take the projection

$$
p r_{p}: \prod_{V} X\left(\mathbb{Q}_{V}\right) \longrightarrow X\left(\mathbb{Q}_{p}\right)
$$

and try to compute

$$
\cap_{\alpha} p r_{p}\left(Z\left(\alpha \circ \prod_{v} j_{v}\right)\right) \subset X\left(\mathbb{Q}_{p}\right)
$$

This turns out to be an intersection of zero sets of $p$-adic iterated integrals.

## IV. Computing Rational Points

## Computing rational points

For $X=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. This is equivalent to the study of unit equations, i.e., solutions to

$$
a+b=1
$$

where $a$ and $b$ are both invertible elements in a ring like $\mathbb{Z}[1 / N]$. There is an $S_{3}$-action on solutions a generated by $z \mapsto 1-z$ and $z \mapsto 1 / z$.

## Computing rational points

[Dan-Cohen, Wewers]
In $\mathbb{Z}[1 / 2]$, only solutions a are

$$
\{2,-1,1 / 2\} \subset\left\{D_{2}(z)=0\right\} \cap\left\{D_{4}(z)=0\right\}
$$

where

$$
\begin{gathered}
D_{2}(z)=\ell_{2}(z)+(1 / 2) \log (z) \log (1-z) \\
D_{4}(z)=\zeta(3) \ell_{4}(z)+(8 / 7)\left[\log ^{3} 2 / 24+\ell_{4}(1 / 2) / \log 2\right] \log (z) \ell_{3}(z) \\
+\left[(4 / 21)\left(\log ^{3} 2 / 24+\ell_{4}(1 / 2) / \log 2\right)+\zeta(3) / 24\right] \log ^{3}(z) \log (1-z)
\end{gathered}
$$ and

$$
\ell_{k}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{k}}
$$

These equations all occur in the field of $p$-adic integers $\mathbb{Z}_{p}$ for some $p$. Numerically, the inclusion appears to be an equality.

## Computing rational points

[Alex Betts]
If $\ell$ is a prime, then solutions in $\mathbb{Z}[1 / \ell]$ are in the zero set of

$$
\log (z)=0, L_{2}(z)=2
$$

and $S_{3}$ permutations.
If $q, \ell$ are primes different from 3 then the solutions in $\mathbb{Z}[1 / q \ell]$ consists of -1 , at most one other point, and $S_{3}$ permutations.

## Computing rational points

Some qualitative results:
[Coates and Kim]

$$
a x^{n}+b y^{n}=c
$$

for $n \geq 4$ has only finitely many rational points.
Standard structural conjectures on mixed motives (generalised BSD)
$\Rightarrow$ There exist many non-zero $\alpha$ as above.
( $\Rightarrow$ Faltings's theorem.)

## Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller, Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan modular curve of level 13. Annals of Math. 189]

$$
X_{s}^{+}(N)=X(N) / C_{s}^{+}(N),
$$

where $X(N)$ the the compactification of the moduli space of pairs

$$
\left(E, \phi: E[N] \simeq(\mathbb{Z} / N)^{2}\right)
$$

and $C_{s}^{+}(N) \subset G L_{2}(\mathbb{Z} / N)$ is the normaliser of a split Cartan subgroup.
Bilu-Parent-Rebolledo had shown that $X_{s}^{+}(p)(\mathbb{Q})$ consists entirely of cusps and CM points for all primes $p>7, p \neq 13$. They called $p=13$ the 'cursed level'.

## Computing rational points

Theorem (BDMTV)
The modular curve

$$
X_{s}^{+}(13)
$$

has exactly 7 rational points, consisting of the cusp and 6 CM points.

This concludes an important chapter of a conjecture of Serre from the 1970s:

There is an absolute constant $A$ such that

$$
G_{\mathbb{Q}} \longrightarrow \operatorname{Aut}(E[p])
$$

is surjective for all non-CM elliptic curves $E / \mathbb{Q}$ and primes $p>A$.

## Computing rational points

[Burcu Baran]

$$
\begin{gathered}
y^{4}+5 x^{4}-6 x^{2} y^{2}+6 x^{3} z+26 x^{2} y z+10 x y^{2} z-10 y^{3} z \\
-32 x^{2} z^{2}-40 x y z^{2}+24 y^{2} z^{2}+32 x z^{3}-16 y z^{3}=0
\end{gathered}
$$



Figure: The cursed curve
$\{(1: 1: 1),(1: 1: 2), \quad(0: 0: 1),(-3: 3: 2), \quad(1: 1: 0),(0,2: 1),(-1: 1: 0)\}$

## V. Why Diophantine Equations?

## Why Diophantine Equations?

In arithmetic geometry, the basic number systems are finitely generated rings:

$$
\mathbb{Z}[1 / N]\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right] .
$$

The $\alpha_{i}$ could be algebraic numbers like $\sqrt{2}, \sqrt{691}, e^{2 \pi i / m}$, or transcendental numbers like $\pi, e, e^{\sqrt{2}}$.

These are number systems with intrinsic discreteness.
Given a finitely-generated ring $A$, arithmetic geometers associate to it a geometric space called the spectrum of $A$ :

$$
\operatorname{Spec}(A)
$$

An arithmetic scheme is glued out of finitely many such spectra. These are the main space of study in arithmetic geometry.

## Why Diophantine Equations?

Ubiquity of arithmetic schemes:
All objects in algebraic geometry have an underlying arithmetic scheme:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \leftrightarrow \operatorname{Spec}\left(R\left[x_{1}, x_{2}, \ldots, x_{n}\right] /(f)\right)=: X
$$

where $R$ is the ring generated by the coefficients of $f$.
So we can look for solutions in any ring $T \supset R$. Denote by $X(T)$ the solutions in $T$.
[In fact, Faltings's theorem implies that when $X$ is a curve of genus at least two, $X(T)$ is finite for any finitely-generated $T$.]

## Why Diophantine Equations?

Ubiquity of arithmetic schemes:
If $M$ is compact manifold, then it is diffeomorphic to $X(\mathbb{R})$, where $X$ is an arithmetic scheme. [Nash-Tognoli]

If $\Sigma$ is a compact Riemann surface, then it is conformally equivalent to $X(\mathbb{C})$, where $X$ is an arithmetic scheme.
Can consider $X(A) \subset X(\mathbb{C})$ for finitely-generated $A \subset \mathbb{C}$.
These are natural discrete subsets of world-sheets of strings.
Similarly for

$$
X A) \subset X(\mathbb{R})=M
$$

and compact manifolds.

## Why Diophantine Equations?

For either $X(\mathbb{R})$ or $X(\mathbb{C})$, have a sequence of natural discrete approximations

$$
X\left(A_{1}\right) \subset X\left(A_{2}\right) \subset X\left(A_{3}\right) \subset \cdots \subset X(\mathbb{R})(X(\mathbb{C}))
$$

as we run over finitely-generated number systems $A_{i}$. Is this a 'practical' approximation?

First need to know how to compute the $X\left(A_{i}\right)$. If the computational problem were easy, we might consider applications more freely.

## Why Diophantine Equations?

The study of classical Diophantine equations is the beginning of the theory of maps between arithmetic schemes:

$$
X(A)=\{\operatorname{Spec}(A) \longrightarrow X\}
$$

