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Our language

Vocabulary:
= equality of vertices
~ adjacency of vertices

First-order logic: quantification over vertices;
no quantification over sets.

Example: We can say that vertices x any y lie at
distance no more than n:
M(x,y) € Xx~yvx=y
An(x,y) € 3z1...32,1 (Al(x, Z1) A A1(21, 22)
A... ANA1(Zpn-2,2Zn-1) A Al(zn_l,y))
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Succinctness measures of a formula ¢

Definition

The width W(®) is the number of variables used in ¢
(different occurrences of the same variable are not
counted).

Example: W(Ap) =n+1 but we can economize by

recycling just three variables:
def

Al(xy) = Ai(xy)
A(X,Y) = Az(AL(x, 2) A A (2, Y)),

where A7 (z,y) =3x(...) getting
w(ar) = 3.
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Succinctness measures of a formula ¢

The depth D(®) (or quantifier rank) is the maximum
number of nested quantifiers in ¢.

Example: D(A7) =n—1 but we can economize
using the halving strategy:

AT(xy) £ A1(xy)

144 def 124
Al(x,y) = 3z (AWZJ(X, 2) A A/r;m](Z' y)) ,
getting D(A’) = [logn] while

keeping W(AT') = 3.
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Succinctness measures of a formula ¢

The length L(®) is the total number of symbols in ¢
(each variable symbol contributes 1).

Example: L(Ap) =0O(n) and L(A]) = O(n) but
we can economize

Ay (xy) & Az(D1(X,2) A Azn(2,Y))

AY(x,y) € AzVu(u=xvu=y
- A"(u, 2)),
getting L(A7”) = O(logn) and still
keeping D(A]”) < 2logn and W(AT”) = 4.
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Definition
A statement ¢ defines a graph G if ¢ is true on G
but false on every non-isomorphic graph H.

Example: Pp, the path on n vertices, is defined by

VXVyAn-1(x,y) A =VXVyAp-_2(X, y)
% diameter = n-1
AVXVY1VY2Vy3(X ~y1 AX~y2 AX~Y3
—Yy1=Y2VY2=Yy3VYy3=y1)
% max degree < 3
AIXAWZ(X~y A (Z~Xx > 2=Y))
% min degree =1
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The logical length, depth, and width of
a graph
L(G) (resp. D(G), W(G)) is the minimum L(®) (resp.
D(®), W(®)) over all ¢ defining G.

W(G) < D(G) < L(G)

Theorem (Pikhurko, Spencer, V. 06)

L(G) < Tower(D(G) + log* D(G) + 2). This bound is
tight in the sence that L(G) > Tower(D(G) — 7) for
infinitely many G.
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Example (a path)
o W(Pn) <4 (in fact, W(Pp)=3ifn=>2)
e D(Pn) <logn+3 (and D(Pp) = logn — 2).
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How to determine W(G) or D(G)?

® D(G) = maxyxs D(G, H), where D(G, H) is the
minimum quantifier depth needed to
distinguish between G and H. Similarly for
W(G).

® D(G, H) and W(G, H) are characterized in terms
of a combinatorial game.
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The Ehrenfeucht game

Barwise; Immerman 82; Poizat 82: G and H are
distinguishable with k variables and quantifier
depth r iff Spoiler wins the k-pebble Ehrenfeucht
game in r rounds.

Rules of the game

Players: Spoiler and Duplicator
Resources: k pebbles,
each in duplicate
G H A round:

Spoiler puts a pebble on a vertex in G or H.
Duplicator puts the other copy in the other graph.
Duplicator’s objective: after each round the
pebbling should determine a partial isomorphism
between G and H.
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Example (a path)
L(Pn) = O(logn)

Remark: This is tight up to a multiplicative constant
because L(Pn) > D(Pp) > logn — 2.
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Variations of logic: bounded number of
variables

DX(G) denotes the logical depth of G in the
k-variable logic (assuming W(G) < k).
Example (a path)

o D3(P;) <logn+3

« L4(Py) = O(log n)

Theorem (Grohe, Schweikardt 05)
L3(P,) > /N

Logical Complexity of Graphs 14/52



Variations of logic: counting quantifiers

3 xW(x) means that there are at least m vertices x
having property V.

The counting quantifier 3™ contributes 1 in the
quantifier depth whatever m.

D4 (G) and W4 (G) denote the logical depth and
width of a graph G in the counting logic.

D’;(G) denotes the variant of DX(G) for the
k-variable counting logic.
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Counting move in the Ehrenfeucht
game

e Spoiler exhibits a set A c V(G) of “good”
vertices.

e Duplicator responds with B c V(H) such that
IB| = |A.
e Spoiler selects b € B and puts a pebble on it.

e Duplicator selects a € A and puts the other
pebble on it.
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Power of counting

W.s(Kn) = 2 while W(Kn) = n + 1.

Is it true that W(G) = O(Wx(G)logn) if G is
asymmetric, i.e., has no nontrivial automorphism?
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® Relevance to Graph Isomorphism
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Color refinement algorithm

O O O O
@ D) C O
O O O

Initial coloring is monochromatic.
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Color refinement

O O

@ — {O, {O}} O O ®
0={0, {6,0}}

e = {0, {5,0,0}}
0={0, {0,0,0,0}}

New color of a vertex =
old color + old colors of all neighbours.
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Next refinement

® O © O

o=1{0, {000,0}}

O O ©)

{0,0,0,0,0,0} £ {0,0,0,0,0,0} —
the graphs are non-isomorphic
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k-dimensional Weisfeiler-Lehman
algorithm

1-dim WL = the color refinement algorithm
k-dim WL colors V(G)K

Initial coloring: C'(&) = the equality type of
U € V(G)K and the isomorphism type of the
spanned subgraph

Color refinement: '
C’(L_l) — {Cl_l(CI), {(Cl—l(ull,X)' s, Cl_l(uk’x))}er}:
where (U1, ..., Uj, ..., u)"*=(U1, ..., X, ..., Uk)
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The Weisfeiler-Lenman algorithm
e purports to decide if input graphs G and H are
isomorphic,
e If G = H, the output is correct.
o If G #H, the output can be wrong.

e has two parameters: dimension and number of
rounds.

Theorem (Cai, Furer, Immerman 92)

The r-round k-dim WL works correctly on any
pair (G, H) if
k=Wy4(G) -1 and r=D5"(G) - 1.
On the other hand, it is wrong on (G, H) for some H
if

k < Wx(G) — 1, whateverr.
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The Weisfeiler-Lenman algorithm

Theorem (Cai, Furer, Immerman 92)

Let C be a class of graphs G with Wx(G) < k for a
constant k. Then Graph Isomorphism for C is
solvable in P.

Theorem (Grohe, V. 06)
@ Let C be a class of graphs G with
DX (G) = O(log n).
Then Graph Isomorphism for C
is solvable in TC! € NC? C AC2.
® Let C be a class of graphs G with
DX(G) = O(logn).
Then Graph Isomorphism for C
is solvable in AC! € TC1,
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© Bounds for particular classes of graphs
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Trees

Theorem (Immerman, Lander 90)
Wx(T) <2 for every tree T.

Remark: Di(Pn) =3 -0(1)
Speed-up: an extra variable — logarithmic depth

Theorem
If T is a tree on n vertices, then Di(T) <3logn+2.
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Proof-sketch

We can easily distinguish between T and T/ 2T if T’

e is disconnected;
¢ has different number of vertices;

e has the same number of vertices, is connected
but has a cycle;

e has larger maximum degree.
It remains the case that T’ is a tree with the same
maximum degree. For simplicity, assume that the

maximum degree is 3 (then no counting quantifiers
are needed).
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Proof cont’d (a separator strategy)

We need to show that Spoiler wins the 3-pebble

gameon T and T’ in 3logn + 2 moves.

Step 1. Spoiler pebbles a separator v in T (every
component of T — v has < n/2 vertices).

Step 2. Spoiler ensures pebbling u € N(v) and

u’ € N(v’) so that the corresponding components
are non-isomorphic rooted trees.

Spoiler forces fur-
ther play on these
components and
applies the same
T T strategy again.
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Proof cont’d

A complication: the strategy is now applied to a
graph with one vertex pebbled and we may need
more than 3 pebbles. Assume that ug and u6 were
pebbled earlier and T — v and T’ — v/ differ only by
the components containing ug and u6. Suppose
that d(v, uo) = d(v/, uy).

Step 3. Spoiler peb-
bles vi in the v-up-
’ v path such that T —
vi and T/ — v’1 dif-
fer by components
. with no pebble

vy (assuming that

d(v, v1) =d(v’, v])).
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Isomorphism of trees (history revision)

If T is a tree on n vertices, then Di(T) <3logn+2.

Testing isomorphism of trees is

e in Log-Space Lindell 92
e in AC! Miller-Reif 91
e in AC! if A =0(logn) Ruzzo 81

e in Lin-Time by 1-WL (W4(T)=2) Edmonds 65
Miller and Reif [SIAM J. Comput. 91]: “No polyloga-
rithmic parallel algorithm was previously known for
isomorphism of unbounded-degree trees.”
However, the 3logn-round 2-WL solves it in TC?!
and is known since 68 !
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Graphs of bounded tree-width

For a graph G of tree-width k on n vertices
Wx(G) <k+2 [Grohe, Marifio 99];

D;Lk*“(G) <2(k+1)logn+8k+9 [Grohe, V. 06].
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Planar graphs

Theorem
For a planar graph G on n vertices

Wx(G)=0(1) [Grohe 98].
If G is, moreover, 3-connected, then
D¥>(G) <1l logn+45 [V.07].
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Interval graphs

Theorem
For an interval graph G on n vertices

Wx(G) <4 [Evdokimov et al. 00, Laubner 10];
D}f(G) < 9logn + 8 [Kébler, Kuhnert, Laubner, V. 11].
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Our approach to interval graphs

e The clique hypergraph C(G) of a graph G has
vertices as in G and the maxcliques in G as
hyperedges.

e G = the Gaifman graph of C(G).
¢ G = the intersection graph of the dual C(G)*.

e Laubner 10: If G is interval, C(G)* is constructible
(definable) from G because any maxclique is then
the common neighborhood of some two vertices.

e If G is interval, any minimal interval model of G is
isomorphic to C(G)*; hence, C(G)* is an interval
hypergraph.

e Then C(G)* is decomposable into a tree, known in
algorithmics as PQ-tree.
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Circular-arc graphs

Is the bound W4(G) = O(1) true for circular-arc
graphs?

The approach used for interval graphs fails because
circular-arc graphs can have exponentially many
maxcliques.

In fact, the status of the isomorphism problem for
circular-arc graphs is open.

Curtis et al. [arXiv, March 12] found a bug in the
only known Hsu’s algorithm.
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Graphs with an excluded minor

Theorem (Grohe 11)
For each H, if G excludes H as a minor, then
W4 (G) =O(1).

Is it then true that D’;(G) — O(logn) for some
constant k?
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Theorem (a version of

Dawar, Lindell, Weinstein 95)
If W(G) < k, then DX(G) < nk—! + k.

Question
How tight is this bound?

We have DX(G) = O(logn) or D’;(G) = O(logn) for
some classes of graphs. Can one formulate some
general conditions under which this is true?
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O® General bounds
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Every finite graph G is definable

by the following generic formula:

3x7...3x, (Distinct(xl, cer) Xn)
A Adj(x1, . .. ,xn))

A VX1...VXpy1 — Distinct(xa, ..., Xpt+1)
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Thus, for any G on n vertices
W(G)<D(G)<n+1, L(G)=0(n?

Bad news: W(Kp)=n+1

Very bad news:

Theorem (Cai, Furer, Immerman 92)

There are graphs on n vertices, even of maximum
degree 3, such that

Wx(G) > 0.004n.
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Any good news? Well,...
Exercise: D(G) < n for all G on n vertices except Kj

and K.
Exercise: D(G) <n —1 for all G on n vertices except
Kn, Kn, K1,n-1, K1,n-1, - . ., altogether 10 exceptional

graphs (each having at least n — 2 twins).
Definition

Two vertices are twins if they are both adjacent or
both non-adjacent to any third vertex.

Theorem (Pikhurko, Veith, V. 06)

For a graph G on n vertices, it is easy to recognize
whether or not

D(G) >n-t,
n—-5
aslong ast < ==,
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Theorem (Pikhurko, Veith, V. 06)
If G is a twin-free graph on n vertices, then

+5
D(G) < %=,

Definition. Let X € V(G) and y ¢ X. The set X sifts
outy if N(y)nX # N(z)n X for any other z ¢ X.
5(X) consists of X and all y sifted out by X.

X is a sieve if S(X) = V(G).

X is a weak sieve if S(5(X)) = V(G).

Exercise 1. Let G #H. If X is a sieve in G, then
Spoiler wins the Ehrenfeucht game on G and H in
|X| +2 moves.

Exercise 2. If X is a weak sieve in G, then Spoiler
wins the Ehrenfeucht game on G and H in |X]| + 3
moves.

Exercise 3. Any twin-free graph G on n vertices has
a weak sieve X with |X| < (n—-1)/2.
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By a similar argument:

Theorem (Pikhurko, Veith, V. 06)

Any two non-isomorphic G and H on n vertices can
be distinguished by a statement of quantifier depth

at most %

Corollary

D#(G) < %n + 3 for any G on n vertices.

W4 (G) < (% — €)n for any G on n vertices?

W4 (G) = o(n) for any asymmetric G on n vertices??
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©® Random graphs
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Random graphs (counting logic)
Theorem (Babai, Erdds, Selkow 80)

With probability more than 1 —1//n, the 1-dim
3-round WL works correctly on a random graph
Gn,1» and all H. Therefore,

D% (Gnaz) < 4
with this probability.

With high probability,

D%(Gn,2) =4 and 3 <D ,(Gnaz) <4

What is the typical value of D#(Gn,l/z)?
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Random graphs (no counting)

Theorem (Kim, Pikhurko, Spencer, V. 05)

With high probability
logn —2loglogn+1 < W(Gp,1,,)
<D(Gp,12) <logn —loglogn + w,

for each (arbitrarily slowly) increasing function
w = w(n).

Theorem (Kim, Pikhurko, Spencer, V. 05)

For infinitely many n
D(Gn,12) <logn—2loglogn+5+logloge +o0(1)
with high probability.
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An application to the 0-1-law
Let pn(®) = P[Gn,12 = ¢].

Theorem (Glebskii et al. 69, Fagin 76)
pn(®) — p(P) as n — oo, where p(¢) € {0, 1}.

Define the convergence rate function by
R(k, n) = max {|pn(®) = p(®)| : D(®) < k}.
Thus, R(k, n) — 0 as n — oo for any fixed k.

Theorem

Let k(n)=logn —2loglogn +c.
@ Setc=1. Then R(k(n),n) — 0 as n — co.
® The claim does not hold true for c = 6.

Logical Complexity of Graphs 47/52



With high probability,

n2
Q <L(G < 0(n?).
(logn)_ (Gn,12) < O(N%)

Where is L(Gn,.,,) concentrated?
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® How succinct are the most succinct definitions?
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The most succinct definitions

Definition (succinctness function)
s(n)=min{D(G) : G has n vertices}

s(n) — o0 as n — oo but its values can be
inconceivably small if compared to n.

Theorem (Pikhurko, Spencer, V. 06)
There is no total recursive function f such that
f(s(n)) = n forall n.
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Nevertheless ...

Definition (smoothed succinctness
function)

s*(n) = maxm<nS(mM), the least monotone
nondecreasing function bounding s(n) from above.

Theorem (Pikhurko, Spencer, V. 06)
log* n—log*log*n—-2<s*(n)<log*n+4
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Succinctness function over trees

Let t(n) =min{D(T): T is a tree on n vertices}.

Theorem (Pikhurko, Spencer, V. 06)

log* n—log*log*n—4<t(n)<log*n+4

Theorem (Dawar, Grohe, Kreutzer,

Schweikardt 07)

For infinitely many n, there is a tree T on n vertices
with L(T) = O((log* n)%).

Conjecture. The first-order theory of a class of
graphs C is decidable iff the succinctness function
over C admits a total recursive lower bound.
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A more detailed exposition can be found in:

O. Pikhurko and O. Verbitsky.

Logical complexity of graphs: a survey.

In: Model Theoretic Methods in Finite
Combinatorics, ). Makowsky and M. Grohe Eds.
Contemporary Mathematics, vol. 558, Amer. Math.
Soc., Providence, RI, pp. 129-179 (2011).
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