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Our language

Vocabulary:
= equality of vertices
∼ adjacency of vertices

First-order logic: quantification over vertices;
no quantification over sets.

Example: We can say that vertices x any y lie at
distance no more than n:

∆1(x, y)
def
= x ∼ y∨ x = y

∆n(x, y)
def
= ∃z1 . . .∃zn−1

�

∆1(x, z1)∧∆1(z1, z2)

∧ . . .∧∆1(zn−2, zn−1)∧∆1(zn−1, y)
�
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Succinctness measures of a formula Φ

Definition
The width W(Φ) is the number of variables used in Φ
(different occurrences of the same variable are not
counted).

Example: W(∆n) = n + 1 but we can economize by
recycling just three variables:

∆′1(x, y)
def
= ∆1(x, y)

∆′
n

(x, y)
def
= ∃z(∆′1(x, z)∧∆′

n−1(z, y)),

where ∆′
n−1(z, y) = ∃x(. . .) getting

W(∆′
n

) = 3.
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Succinctness measures of a formula Φ

Definition
The depth D(Φ) (or quantifier rank) is the maximum
number of nested quantifiers in Φ.

Example: D(∆′
n

) = n− 1 but we can economize
using the halving strategy:

∆′′1 (x, y)
def
= ∆1(x, y)

∆′′
n

(x, y)
def
= ∃z

�

∆′′bn/2c(x, z)∧∆′′dn/2e(z, y)
�

,

getting D(∆′′
n

) = dlogne while
keeping W(∆′′

n
) = 3.
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Succinctness measures of a formula Φ

Definition
The length L(Φ) is the total number of symbols in Φ
(each variable symbol contributes 1).

Example: L(∆n) = O(n) and L(∆′′
n

) = O(n) but
we can economize

∆′′′2n+1(x, y)
def
= ∃z (∆1(x, z)∧∆2n(z, y))

∆′′′2n
(x, y)

def
= ∃z∀u

�

u = x∨ u = y

→ ∆′′′
n

(u, z)
�

,

getting L(∆′′′
n

) = O(logn) and still
keeping D(∆′′′

n
) ≤ 2 logn and W(∆′′′

n
) = 4.
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Definition
A statement Φ defines a graph G if Φ is true on G
but false on every non-isomorphic graph H.

Example: Pn, the path on n vertices, is defined by

∀x∀y∆n−1(x, y)∧¬∀x∀y∆n−2(x, y)

% diameter = n-1

∧∀x∀y1∀y2∀y3(x ∼ y1 ∧ x ∼ y2 ∧ x ∼ y3

→ y1 = y2 ∨ y2 = y3 ∨ y3 = y1)

% max degree < 3

∧∃x∃y∀z
�

x ∼ y∧ (z ∼ x→ z = y)
�

% min degree = 1
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The logical length, depth, and width of
a graph

Definition
L(G) (resp. D(G), W(G)) is the minimum L(Φ) (resp.
D(Φ), W(Φ)) over all Φ defining G.

Remark
W(G) ≤ D(G) < L(G)

Theorem (Pikhurko, Spencer, V. 06)
L(G) < Tower(D(G) + log∗D(G) + 2). This bound is
tight in the sence that L(G) ≥ Tower(D(G)− 7) for
infinitely many G.
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Example (a path)
• W(Pn) ≤ 4 (in fact, W(Pn) = 3 if n ≥ 2)
• D(Pn) < logn + 3 (and D(Pn) ≥ logn− 2).
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How to determine W(G) or D(G)?

1 D(G) = maxH 6∼=G D(G,H), where D(G,H) is the
minimum quantifier depth needed to
distinguish between G and H. Similarly for
W(G).

2 D(G,H) and W(G,H) are characterized in terms
of a combinatorial game.
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The Ehrenfeucht game
Barwise; Immerman 82; Poizat 82: G and H are
distinguishable with k variables and quantifier
depth r iff Spoiler wins the k-pebble Ehrenfeucht
game in r rounds.

G H

Rules of the game
Players: Spoiler and Duplicator
Resources: k pebbles,

each in duplicate
A round:

Spoiler puts a pebble on a vertex in G or H.
Duplicator puts the other copy in the other graph.
Duplicator’s objective: after each round the
pebbling should determine a partial isomorphism
between G and H.
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Example (a path)
L(Pn) = O(logn)

Remark: This is tight up to a multiplicative constant
because L(Pn) > D(Pn) ≥ logn− 2.
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Variations of logic: bounded number of
variables

Dk(G) denotes the logical depth of G in the
k-variable logic (assuming W(G) ≤ k).

Example (a path)
• D3(Pn) ≤ logn + 3
• L4(Pn) = O(logn)

Theorem (Grohe, Schweikardt 05)
L3(Pn) >

p
n
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Variations of logic: counting quantifiers

∃m xΨ(x) means that there are at least m vertices x
having property Ψ.
The counting quantifier ∃m contributes 1 in the
quantifier depth whatever m.

D#(G) and W#(G) denote the logical depth and
width of a graph G in the counting logic.

Dk
#

(G) denotes the variant of Dk(G) for the
k-variable counting logic.
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Counting move in the Ehrenfeucht
game

• Spoiler exhibits a set A ⊂ V(G) of “good”
vertices.

• Duplicator responds with B ⊂ V(H) such that
|B| = |A|.

• Spoiler selects b ∈ B and puts a pebble on it.
• Duplicator selects a ∈ A and puts the other

pebble on it.
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Power of counting

Example
W#(Kn) = 2 while W(Kn) = n + 1.

Question
Is it true that W(G) = O(W#(G) logn) if G is
asymmetric, i.e., has no nontrivial automorphism?
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Color refinement algorithm

Initial coloring is monochromatic.

Logical Complexity of Graphs 19/52



Color refinement

= { ,{ }}
= { ,{ , }}
= { ,{ , , }}
= { ,{ , , , }}

New color of a vertex =
old color + old colors of all neighbours.
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Next refinement

= { ,{ , , , }}

{ , , , , , } 6= { , , , , , } =⇒
the graphs are non-isomorphic
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k-dimensional Weisfeiler-Lehman
algorithm

• 1-dim WL = the color refinement algorithm
• k-dim WL colors V(G)k

• Initial coloring: C1(ū) = the equality type of
ū ∈ V(G)k and the isomorphism type of the
spanned subgraph

• Color refinement:
Ci(ū) = {Ci−1(ū),{(Ci−1(ū1,x), . . . , Ci−1(ūk,x))}x∈V},
where (u1, . . . , ui, . . . , uk)i,x = (u1, . . . , x, . . . , uk)
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The Weisfeiler-Lehman algorithm
• purports to decide if input graphs G and H are

isomorphic,
• If G ∼= H, the output is correct.
• If G 6∼= H, the output can be wrong.

• has two parameters: dimension and number of
rounds.

Theorem (Cai, Fürer, Immerman 92)
The r-round k-dim WL works correctly on any
pair (G,H) if

k = W#(G)− 1 and r = Dk+1
# (G)− 1.

On the other hand, it is wrong on (G,H) for some H
if

k < W#(G)− 1, whatever r.
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The Weisfeiler-Lehman algorithm
Theorem (Cai, Fürer, Immerman 92)
Let C be a class of graphs G with W#(G) ≤ k for a
constant k. Then Graph Isomorphism for C is
solvable in P.

Theorem (Grohe, V. 06)
1 Let C be a class of graphs G with

Dk
#

(G) = O(logn).

Then Graph Isomorphism for C
is solvable in TC1 ⊆NC2 ⊆ AC2.

2 Let C be a class of graphs G with
Dk(G) = O(logn).

Then Graph Isomorphism for C
is solvable in AC1 ⊆ TC1.
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Trees

Theorem (Immerman, Lander 90)
W#(T) ≤ 2 for every tree T.

Remark: D2
#

(Pn) = n
2 −O(1)

Speed-up: an extra variable 7→ logarithmic depth

Theorem
If T is a tree on n vertices, then D3

#
(T) ≤ 3 logn + 2.
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Proof-sketch

We can easily distinguish between T and T′ 6∼= T if T′

• is disconnected;
• has different number of vertices;
• has the same number of vertices, is connected

but has a cycle;
• has larger maximum degree.

It remains the case that T′ is a tree with the same
maximum degree. For simplicity, assume that the
maximum degree is 3 (then no counting quantifiers
are needed).
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Proof cont’d (a separator strategy)

We need to show that Spoiler wins the 3-pebble
game on T and T′ in 3 logn + 2 moves.
Step 1. Spoiler pebbles a separator v in T (every
component of T − v has ≤ n/2 vertices).
Step 2. Spoiler ensures pebbling u ∈ N(v) and
u′ ∈ N(v′) so that the corresponding components
are non-isomorphic rooted trees.

u

T T´

u´

v v´

Spoiler forces fur-
ther play on these
components and
applies the same
strategy again.
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Proof cont’d
A complication: the strategy is now applied to a
graph with one vertex pebbled and we may need
more than 3 pebbles. Assume that u0 and u′0 were
pebbled earlier and T − v and T′ − v′ differ only by
the components containing u0 and u′0. Suppose
that d(v,u0) = d(v′, u′0).

T T´

u
0

u
0́

u

u

0

1

1

u
0́

u
1́

1
v´ v´

v´v

v v

Step 3. Spoiler peb-
bles v1 in the v-u0-
path such that T −
v1 and T′ − v′1 dif-
fer by components
with no pebble
(assuming that
d(v, v1) = d(v′, v′1)).
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Isomorphism of trees (history revision)
Theorem
If T is a tree on n vertices, then D3

#
(T) ≤ 3 logn + 2.

Testing isomorphism of trees is
• in Log-Space Lindell 92

• in AC1 Miller-Reif 91

• in AC1 if ∆ = O(logn) Ruzzo 81

• in Lin-Time by 1-WL (W#(T) = 2) Edmonds 65

Miller and Reif [SIAM J. Comput. 91]: “No polyloga-
rithmic parallel algorithm was previously known for
isomorphism of unbounded-degree trees.”

However, the 3 logn-round 2-WL solves it in TC1

and is known since 68 !
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Graphs of bounded tree-width

Theorem
For a graph G of tree-width k on n vertices

W#(G) ≤ k + 2 [Grohe, Mariño 99];

D4k+4
# (G) < 2(k + 1) logn + 8k + 9 [Grohe, V. 06].
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Planar graphs

Theorem
For a planar graph G on n vertices

W#(G) = O(1) [Grohe 98].

If G is, moreover, 3-connected, then

D15(G) < 11 logn + 45 [V. 07].
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Interval graphs

Theorem
For an interval graph G on n vertices

W#(G) ≤ 4 [Evdokimov et al. 00, Laubner 10];

D15
#

(G) < 9 logn + 8 [Köbler, Kuhnert, Laubner, V. 11].
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Our approach to interval graphs

• The clique hypergraph C(G) of a graph G has
vertices as in G and the maxcliques in G as
hyperedges.
• G = the Gaifman graph of C(G).
• G ∼= the intersection graph of the dual C(G)∗.
• Laubner 10: If G is interval, C(G)∗ is constructible
(definable) from G because any maxclique is then
the common neighborhood of some two vertices.
• If G is interval, any minimal interval model of G is
isomorphic to C(G)∗; hence, C(G)∗ is an interval
hypergraph.
• Then C(G)∗ is decomposable into a tree, known in
algorithmics as PQ-tree.
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Circular-arc graphs

Question
Is the bound W#(G) = O(1) true for circular-arc
graphs?

The approach used for interval graphs fails because
circular-arc graphs can have exponentially many
maxcliques.

In fact, the status of the isomorphism problem for
circular-arc graphs is open.
Curtis et al. [arXiv, March 12] found a bug in the
only known Hsu’s algorithm.
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Graphs with an excluded minor

Theorem (Grohe 11)
For each H, if G excludes H as a minor, then

W#(G) = O(1).

Question
Is it then true that Dk

#
(G) = O(logn) for some

constant k?
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Theorem (a version of
Dawar, Lindell, Weinstein 95)
If W(G) ≤ k, then Dk(G) < nk−1 + k.

Question
How tight is this bound?

We have Dk(G) = O(logn) or Dk
#

(G) = O(logn) for

some classes of graphs. Can one formulate some
general conditions under which this is true?
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Remark
Every finite graph G is definable

by the following generic formula:

∃x1 . . .∃xn

�

Distinct(x1, . . . , xn)

∧Adj(x1, . . . , xn)
�

∧ ∀x1 . . .∀xn+1 ¬Distinct(x1, . . . , xn+1)
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Thus, for any G on n vertices
W(G) ≤ D(G) ≤ n + 1, L(G) = O(n2)

Bad news: W(Kn) = n + 1

Very bad news:

Theorem (Cai, Fürer, Immerman 92)
There are graphs on n vertices, even of maximum
degree 3, such that

W#(G) > 0.004n.

Logical Complexity of Graphs 40/52



Any good news? Well,...
Exercise: D(G) ≤ n for all G on n vertices except Kn

and Kn.
Exercise: D(G) ≤ n− 1 for all G on n vertices except
Kn, Kn, K1,n−1, K1,n−1, . . ., altogether 10 exceptional
graphs (each having at least n− 2 twins).

Definition
Two vertices are twins if they are both adjacent or
both non-adjacent to any third vertex.

Theorem (Pikhurko, Veith, V. 06)
For a graph G on n vertices, it is easy to recognize
whether or not

D(G) > n− t,

as long as t ≤ n−5
2 .

Logical Complexity of Graphs 41/52



Theorem (Pikhurko, Veith, V. 06)
If G is a twin-free graph on n vertices, then

D(G) ≤ n+5
2 .

Definition. Let X ⊂ V(G) and y /∈ X. The set X sifts
out y if N(y) ∩ X 6= N(z) ∩ X for any other z /∈ X.
S(X) consists of X and all y sifted out by X.
X is a sieve if S(X) = V(G).
X is a weak sieve if S(S(X)) = V(G).
Exercise 1. Let G 6∼= H. If X is a sieve in G, then
Spoiler wins the Ehrenfeucht game on G and H in
|X|+ 2 moves.
Exercise 2. If X is a weak sieve in G, then Spoiler
wins the Ehrenfeucht game on G and H in |X|+ 3
moves.
Exercise 3. Any twin-free graph G on n vertices has
a weak sieve X with |X| ≤ (n− 1)/2.
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By a similar argument:

Theorem (Pikhurko, Veith, V. 06)
Any two non-isomorphic G and H on n vertices can
be distinguished by a statement of quantifier depth
at most n+3

2 .

Corollary
D

#
(G) ≤ 1

2 n + 3 for any G on n vertices.

Question
W#(G) ≤ (1

2 − ε) n for any G on n vertices?

Question
W#(G) = o(n) for any asymmetric G on n vertices??
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Random graphs (counting logic)
Theorem (Babai, Erdős, Selkow 80)
With probability more than 1− 1/ 7pn, the 1-dim
3-round WL works correctly on a random graph
Gn,1/2 and all H. Therefore,

D2
#

(Gn,1/2) ≤ 4

with this probability.

Theorem
With high probability,

D2
#

(Gn,1/2) = 4 and 3 ≤ D
#

(Gn,1/2) ≤ 4

Question
What is the typical value of D

#
(Gn,1/2)?
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Random graphs (no counting)

Theorem (Kim, Pikhurko, Spencer, V. 05)
With high probability

logn− 2 log logn + 1 < W(Gn,1/2)

≤ D(Gn,1/2) ≤ logn− log logn +ω,

for each (arbitrarily slowly) increasing function
ω = ω(n).

Theorem (Kim, Pikhurko, Spencer, V. 05)
For infinitely many n

D(Gn,1/2) ≤ logn− 2 log logn + 5 + log loge+ o(1)

with high probability.
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An application to the 0-1-law
Let pn(Φ) = P [Gn,1/2 |= Φ].

Theorem (Glebskii et al. 69, Fagin 76)
pn(Φ)→ p(Φ) as n→∞, where p(Φ) ∈ {0,1}.

Define the convergence rate function by
R(k,n) = max

Φ

�

|pn(Φ)− p(Φ)| : D(Φ) ≤ k
	

.

Thus, R(k,n)→ 0 as n→∞ for any fixed k.

Theorem
Let k(n) = logn− 2 log logn + c.

1 Set c = 1. Then R(k(n), n)→ 0 as n→∞.

2 The claim does not hold true for c = 6.
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Remark
With high probability,

Ω

�

n2

logn

�

≤ L(Gn,1/2) ≤ O(n2).

Question
Where is L(Gn,1/2) concentrated?
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The most succinct definitions

Definition (succinctness function)
s(n) = min

�

D(G) : G has n vertices
	

s(n)→∞ as n→∞ but its values can be
inconceivably small if compared to n.

Theorem (Pikhurko, Spencer, V. 06)
There is no total recursive function f such that

f (s(n)) ≥ n for all n.
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Nevertheless ...

Definition (smoothed succinctness
function)
s∗(n) = maxm≤n s(m), the least monotone
nondecreasing function bounding s(n) from above.

Theorem (Pikhurko, Spencer, V. 06)
log∗ n− log∗ log∗ n− 2 ≤ s∗(n) ≤ log∗ n + 4
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Succinctness function over trees

Let t(n) = min
�

D(T) : T is a tree on n vertices
	

.

Theorem (Pikhurko, Spencer, V. 06)
log∗ n− log∗ log∗ n− 4 ≤ t(n) ≤ log∗ n + 4

Theorem (Dawar, Grohe, Kreutzer,
Schweikardt 07)
For infinitely many n, there is a tree T on n vertices
with L(T) = O((log∗ n)4).

Conjecture. The first-order theory of a class of
graphs C is decidable iff the succinctness function
over C admits a total recursive lower bound.

Logical Complexity of Graphs 52/52



A more detailed exposition can be found in:

O. Pikhurko and O. Verbitsky.
Logical complexity of graphs: a survey.
In: Model Theoretic Methods in Finite
Combinatorics, J. Makowsky and M. Grohe Eds.
Contemporary Mathematics, vol. 558, Amer. Math.
Soc., Providence, RI, pp. 129–179 (2011).
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