IMC Selection Test 2

- Work on the test between 12 pm and 4 pm UK time (at most 4 hours)
- Books, notes, calculators and internet are not allowed
- If you have questions about the test, you can call me via MS Teams 12-1pm (during the first hour of the test)
- Make a separate pdf file for each attempted question, naming it ID_Surname_Question.pdf (for example 1234567_Smith_2.pdf), the same naming scheme as for Test 1
- Email your solutions (as pdf files) before 5pm to o.pikhurko@warwick.ac.uk with subject: IMC Test 2

Problem 1 Let $s_{0}:=1$ and, inductively on $n=1,2,3, \ldots$, define $s_{n}:=\left(\frac{6 n+1}{n+1}+s_{n-1}\right)^{1 / 3}$. Does the limit $\lim _{n \rightarrow \infty} s_{n}$ exist? If yes, determine its value.

Problem 2 Find $a, b, c \in \mathbb{R}$ such that for every closed convex polygon R in the plane it holds that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-D(x, y)} \mathrm{d} x \mathrm{~d} y=a+b P+c A,
$$

where $D(x, y)$ is the Euclidean distance from $(x, y) \in \mathbb{R}^{2}$ to the nearest point of R, P is the perimeter of R and A is the area of R.

Problem 3 An unbiased coin is tossed n times. What is the expected value of $|H-T|$, where H is the number of heads and T is the number of tails? You have to find a closed formula for your answer.

Problem 4 Prove that $x \mapsto 2 x$ is the unique function $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
f(f(x))=6 x-f(x), \quad \text { for all } x \in(0, \infty)
$$

Problem 5 Let H be a finite group and let K be a subgroup of H. Show that there exist elements $h_{1}, h_{2}, \ldots, h_{n} \in H$ with $n=|H| /|K|$, such that $h_{1} K, h_{2} K, \ldots, h_{n} K$ are the left cosets of K and $K h_{1}, K h_{2}, \ldots, K h_{n}$ are the right cosets of K (i.e. each of these two n-tuples forms a partition of $H)$. Here, for $h \in H$, we denote $h K:=\{h k: k \in K\}$ and $K h:=\{k h: k \in K\}$.

