IMC Selection Test 1

Problem 1. Determine all polynomials P(x) such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0.

Problem 2. Let A, B be two square complex matrices satisfying AB - BA = A. Prove that det(A) = 0.

Problem 3. Let $x_1, \dots, x_n \in \mathbb{R}^2$ satisfy $||x_i||_2 \le 1$ for all $1 \le i \le n$ and $||x_i - x_j||_2 > \frac{1}{2}$ for all $1 \le i < j \le n$, where $||(x,y)||_2 = \sqrt{x^2 + y^2}$ is the Euclidean norm. Show that $n \le 25$.

Problem 4. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(|f(x) - f(y)|) = f(f(x)) - 2x^2 f(y) + f(y^2)$$
(1)

for all $x, y \in \mathbb{R}$.