## IMC Selection Test 1

Solution to Problem 1. Plugging $x=0$, we get $P(1)=1$. Plugging $x=1$, we get $P(2)=2$, plugging $x=2$, we get $P(5)=5$, and so on. Thus $P(x)$ and $x$ coincide in infinitely many values of $x$, so they are identical.

Solution to Problem 2. We can prove by induction that $A^{k} B-B A^{k}=k A^{k}$ for all $k \geq 1$. Clearly the base case $k=1$ is given by assumption. Now assume $A^{k} B-B A^{k}=$ $k A^{k}$ for some $k \geq 1$. Then

$$
\begin{aligned}
A^{k+1} B & =A\left(B A^{k}+k A^{k}\right)=A B A^{k}+k A^{k+1} \\
& =(B A+A) A^{k}+k A^{k+1}=B A^{k+1}+(k+1) A^{k+1}
\end{aligned}
$$

thus proving the induction step. This implies $\operatorname{tr}\left(k A^{k}\right)=\operatorname{tr}\left(A^{k} B-B A^{k}\right)=0$, and so $\operatorname{tr}\left(A^{k}\right)=0$ for all $k \geq 1$. Hence, $A$ is nilpotent, and so $\operatorname{det}(A)=0$.

Solution to Problem 3. For each $1 \leq i \leq n$, let $B_{i}$ be the ball of radius $\frac{1}{4}$ centered at $x_{i}$. Then from assumption, these $n$ balls are disjoint and are all contained in the ball of radius $\frac{5}{4}$ centered at the origin. By computing area, we have $\frac{\pi n}{16} \leq \frac{25 \pi}{16}$, which implies that $n \leq 25$.

Solution to Problem 4. Taking $x=y=0$ gives $f(f(0)=0$. For brevity, we let $c:=f(0)$. Now taking $x=0$ gives $f(|f(y)-c|)=f\left(y^{2}\right)$, and taking $y=0$ gives $f(|f(x)-c|)=f(f(x))+c\left(1-2 x^{2}\right)$. By combining these two equations, we get $f(f(x))=$ $f\left(x^{2}\right)+c\left(2 x^{2}-1\right)$. Substituting back into (??) gives us $f(|f(x)-f(y)|)=f\left(x^{2}\right)+$ $f\left(y^{2}\right)+c\left(2 x^{2}-1\right)-2 x^{2} f(y)$. As the left hand side is symmetrical in $x$ and $y$, we get $c\left(x^{2}-y^{2}\right)=x^{2} f(y)-y^{2} f(x)$. Now taking $y=1$ shows that $f(x)=a x^{2}+b$ for some $a, b \in \mathbb{R}$.

Substituting this into (??) gives $a^{3}\left(x^{2}-y^{2}\right)^{2}=f(f(x))-2 x^{2}\left(a y^{2}+b\right)+a y^{4}$. Now letting $x=0$ gives $a^{3} y^{4}=a y^{4}$ for all $y \in \mathbb{R}$, and thus $a \in\{-1,0,1\}$. Checking each of these possibilities gives the following solutions: $f \in\left\{0, x^{2}, x^{2}-1,-x^{2},-x^{2}+1\right\}$.

