IMC 2023 Training Calculus

Problems

1. (IMC 2020 Problem 5) Find all twice continuously differentiable functions $f: \mathbb{R} \to (0, +\infty)$ satisfying

$$f''(x)f(x) \ge 2(f'(x))^2$$

for all $x \in \mathbb{R}$.

2. (IMC 2019 Problem 3) Let $f:(-1,1)\to\mathbb{R}$ be a twice differentiable function such that

$$2f'(x) + xf''(x) \ge 1 \text{ for } x \in (-1, 1).$$

Prove that

$$\int_{-1}^{1} x f(x) dx \ge \frac{1}{3}.$$

3. (IMC 2019 Problem 6) Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions such that g is differentiable. Assume that

$$(f(0) - g'(0))(g'(1) - f(1)) > 0.$$

Show that there exists a point $c \in (0,1)$ such that f(c) = g'(c).

4. (IMC 2018 Problem 4) Find all differentiable functions $f:(0,\infty)\to\mathbb{R}$ such that

$$f(b) - f(a) = (b - a)f'(\sqrt{ab})$$
 for all $a, b > 0$.

- 5. (Putnam 2015 B1) Let $f: \mathbb{R} \to \mathbb{R}$ be a three times differentiable function such that f has at least five distinct real zeros. Prove that f + 6f' + 12f'' + 8f''' has at least two distinct real zeros.
- 6. (Putnam 1997 B2) Let f be a twice differentiable real valued function satisfying

$$f(x) + f''(x) = -xg(x)f'(x),$$

where g(x) > 0 for all real x. Prove that |f(x)| is bounded.

7. (VJMC 2019 II P2) Find all twice differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f''(x)\cos(f(x)) \ge (f'(x))^2\sin(f(x))$$
 for every $x \in \mathbb{R}$.

8. (VJMC 2013 I P1) Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function with $|f(x)|\leq M$ and

$$f(x)f'(x) \ge \cos x \text{ for } x \in [0, \infty),$$

where M > 0. Prove that f(x) does not have a limit as $x \to \infty$.

Exercise

1. (IMC2022 Problem 1) Let $f:[0,1]\to (0,\infty)$ be an integrable function such that $f(x)\cdot f(1-x)=1$ for all $x\in [0,1]$. Prove that

$$\int_0^1 f(x)dx \ge 1.$$

2. (IMC2021 Problem 4) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Suppose that for any $\varepsilon > 0$, there exists a function $g: \mathbb{R} \to (0, \infty)$ such that for every pair (x, y) of real numbers,

if
$$|x-y| < \min\{g(x), g(y)\}$$
, then $|f(x) - f(y)| < \varepsilon$.

Prove that f is the pointwise limit of a sequence of continuous $\mathbb{R} \to \mathbb{R}$ functions, i.e., there is a sequence h_1, h_2, \ldots of continuous $\mathbb{R} \to \mathbb{R}$ functions such that $\lim_{n \to \infty} h_n(x) = f(x)$ for every $x \in \mathbb{R}$.

3. (IMC2021 Problem 7) Let $D \subset \mathbb{C}$ be an open set containing the closed unit disk $\{z: |z| \leq 1\}$. Let $f: D \to \mathbb{C}$ be a holomorphic function, and let p(z) be a monic polynomial. Prove that

$$|f(0)| \le \max_{|z|=1} |f(z)p(z)|.$$

- 4. (Putnam 2018 A5) Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1 and $f(x) \ge 0$ for all $x \in \mathbb{R}$. Show that there exists a positive integer n and a real number x such that $f^{(n)}(x) < 0$.
- 5. (Putnam 2017 A3) Let a and b be real numbers with a < b, and let f and g be continuous functions from [a,b] to $(0,\infty)$ such that $\int_a^b f(x)dx = \int_a^b g(x)dx$ but $f \neq g$. For every positive integer n, define

$$I_n = \int_a^b \frac{(f(x))^{n+1}}{(g(x))^n} dx.$$

Show that I_1, I_2, I_3, \ldots is an increasing sequence with $\lim_{n \to \infty} I_n = \infty$.

6. (Putnam 2016 A3) Suppose that f is a function from \mathbb{R} to \mathbb{R} such that

$$f(x) + f\left(1 - \frac{1}{x}\right) = \arctan x$$

for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find

$$\int_0^1 f(x)dx.$$

7. (VJMC 2017 I P4) Let $f:(1,\infty)\to\mathbb{R}$ be a continuously differentiable function satisfying $f(x)\leq x^2\log(x)$ and f'(x)>0 for every $x\in(1,\infty)$. Prove that

$$\int_{1}^{\infty} \frac{1}{f'(x)} \, dx = \infty.$$

- 8. (VJMC 2017 II P2) Prove or disprove the following statement. If $g:(0,1) \to (0,1)$ is an increasing function and satisfies g(x) > x for all $x \in (0,1)$, then there exists a continuous function $f:(0,1) \to mathbb{R}$ satisfying f(x) < f(g(x)) for all $x \in (0,1)$, but f is not an increasing function.
- 9. (VJMC 2016 I P1) Let $f: \mathbb{R} \to (0, \infty)$ be a continuously differentiable function. Prove that there exists $\xi \in (0, 1)$ such that

$$e^{f'(\xi)}f(0)^{f(\xi)} = f(1)^{f(\xi)}.$$

- 10. (VJMC 2016 II P4) Let $f:[0,\infty)\to\mathbb{R}$ be a continuously
- 11. (SMMC 2021 B3) Determine all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the following two properties.
 - (i) The Riemann integral $\int_a^b f(t)dt$ exists for all real numbers a < b.
 - (ii) For every real number x and every integer $n \ge 1$ we have

$$f(x) = \frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(t)dt.$$

IMC 2023 Training Calculus Solutions

Useful theorems

Theorem 1 (Rolle's theorem). Let $f:[a,b] \to \mathbb{R}$ be a function such that

- f is continuous on [a, b], and
- f is differentiable on (a, b), and
- f(a) = f(b).

Then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem 2 (Lagrange's mean value theorem). Let $f:[a,b] \to \mathbb{R}$ be a function such that

- f is continuous on [a, b], and
- f is differentiable on (a, b).

Then there exists $\xi \in (a, b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 3 (Darboux's theorem). Let f(x) be a function such that f'(x) exists for any $x \in [a,b]$. Then for any y between f'(a) and f'(b), there exists $\xi \in (a,b)$ such that $f'(\xi) = y$.

Theorem 4 (Taylor's theorem). Let a and x be any real numbers. Let f(x) be a continuous function such that the n+1-th derivative of f(x) exists between a and x. Then there exists ξ between a and x such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!} + \frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}.$$

Solutions

1. (IMC 2020 Problem 5) Let $g(x) = \frac{1}{f(x)}$. We are going to prove that g is constant and hence f is constant. Observe that

$$g' = -\frac{f'}{f^2}$$

$$g'' = \frac{2(f')^2 - ff''}{f^3} \le 0.$$

Suppose there exists $a \in \mathbb{R}$ such that $g'(a) \neq 0$. For any $x \in \mathbb{R}$, we can find ξ between a and x, by Taylor's theorem, which shows that

$$g(x) = g(a) + g'(a)(x - a) + \frac{g''(\xi)(x - a)^2}{2!} \le g(a) + g'(a)(x - a).$$

Then by taking $x = a - \frac{2g(a)}{g'(a)}$, we have

$$g(x) \le g(a) + g'(a) \left(\left(a - \frac{2g(a)}{g'(a)} \right) - a \right) = -g(a) < 0$$

which is impossible since $g(x) = \frac{1}{f(x)} > 0$ for any $x \in \mathbb{R}$. It follows that g'(x) = 0 for any $x \in \mathbb{R}$. Therefore g(x) is a constant function which implies f(x) is a constant function.

2. (IMC 2019 Problem 3) Let

$$g(x) = xf(x) - \frac{x^2}{2},$$

Observe that

$$g'(x) = f(x) + xf'(x) - x$$

$$q''(x) = 2f'(x) + xf''(x) - 1 > 0.$$

For any $x \in (-1,1)$, we can find ξ between 0 and x, by Taylor's theorem, which shows that

$$g(x) = g(0) + g'(0)x + \frac{g''(\xi)x^2}{2} \ge f(0)x.$$

Therefore

$$\int_{-1}^{1} x f(x) dx = \int_{-1}^{1} \left(g(x) + \frac{x^2}{2} \right) dx \ge \int_{-1}^{1} \left(f(0)x + \frac{x^2}{2} \right) dx = \frac{1}{3}.$$

3. (IMC 2019 Problem 6) Let

$$h(x) = \int_0^x f(t)dt - g(x).$$

Since f(x) is continuous, by fundamental theorem of calculus, we have h'(x) = f(x) - g'(x) for any $x \in \mathbb{R}$. Using the assumption, we have

$$h'(0)h'(1) = (f(0) - g'(0))(f(1) - g'(1)) < 0.$$

So h'(0) and h'(1) are of opposite signs. By the mean value theorem for derivatives (Darboux's theorem), there exists 0 < c < 1 such that h'(c) = 0 which means f(c) = g'(c).

4. (IMC 2018 Problem 4) First we show that f is infinitely differentiable. For any $x \in (0, +\infty)$, by putting $a = \frac{x}{2}$ and b = 2x, we have

$$f'(x) = \frac{f(2x) - f(\frac{x}{2})}{\frac{3x}{2}}.$$

Since f(x) is differentiable, we see that f'(x) is differentiable which means f(x) is twice differentiable. Using an inductive argument, we see that f(x) is infinitely differentiable.

Now for any $t \in \mathbb{R}$, putting $b = e^t x$ and $a = e^{-t} x$, we have

$$f(e^t x) - f(e^{-t} x) = (e^t - e^{-t})xf'(x).$$

Differentiate the above equality with respect to t for 3 times, we have

$$e^{t}xf'(e^{t}x) + e^{-t}xf'(e^{-t}x) = (e^{t} + e^{-t})xf'(x)$$

$$e^{2t}x^{2}f''(e^{t}x) + e^{t}xf'(e^{t}x) - e^{-2t}x^{2}f''(e^{-t}x) - e^{-t}xf'(e^{-t}x) = (e^{t} - e^{-t})xf'(x)$$

$$e^{3t}x^{3}f'''(e^{t}x) + 3e^{3t}x^{2}f''(e^{t}x) + e^{t}xf'(e^{t}x)$$

$$+e^{-3t}x^{3}f'''(e^{-t}x) + 3e^{-3t}x^{2}f''(e^{-t}x) + e^{-t}xf'(e^{-t}x) = (e^{t} + e^{-t})xf'(x)$$

Now putting t=0, we obtain

$$x^{3}f'''(x) + 3x^{2}f''(x) + xf'(x) = 2xf'(x)$$

$$+x^{3}f'''(x) + 3x^{2}f''(x) + xf'(x) = 0$$

$$2x^{3}f'''(x) + 6x^{2}f''(x) = 0$$

$$xf'''(x) + 3f''(x) = 0$$

$$(xf(x))''' = 0.$$

It follows that $xf(x) = C_2x^2 + C_1x + C_0$ and therefore

$$f(x) = C_2 x + C_1 + \frac{C_0}{x}$$

where C_0, C_1, C_2 are arbitrary constants. It is easy to verify that all functions of this form satisfy the condition.

5. (Putnam 2015 B1) Let $g(x) = e^{\frac{x}{2}}f(x)$. Then g has at least 5 distinct real zeros. By Rolle's theorem, g'(x) has at least 4 distinct zeros. By repeating the argument, g''(x) has at least 3 distinct zeros and g'''(x) has at least 2 zeros. Now

$$g'(x) = \frac{1}{2}e^{\frac{x}{2}}(f(x) + 2f'(x))$$

$$g''(x) = \frac{1}{4}e^{\frac{x}{2}}(f(x) + 4f'(x) + 4f''(x))$$

$$g'''(x) = \frac{1}{8}e^{\frac{x}{2}}(f(x) + 6f'(x) + 12f''(x) + 8f'''(x)).$$

Thus $f(x) + 6f'(x) + 12f''(x) + 8f'''(x) = 8e^{-\frac{x}{2}}g'''(x)$ has at least 2 distinct zeros.

6. (Putnam 1997 B2) Let $h = f^2 + (f')^2$. Then

$$h' = 2ff' + 2f'f'' = 2f'(f + f'') = -2xg(f')^{2}.$$

Thus $h'(x) \ge 0$ when x < 0 and $h'(x) \le 0$ when x > 0. It follows that $h(x) \le h(0)$ for any $x \in \mathbb{R}$. Therefore

$$f^2 = h^2 - (f')^2 \le h^2 \le (h(0))^2$$

which implies |f(x)| is bounded.

7. (VJMC 2019 II P2) Let $g(x) = \sin(f(x))$. Then

$$g' = f' \cos f$$

$$g'' = f'' \cos f - (f')^2 \sin f \ge 0.$$

Suppose there exists $a \in \mathbb{R}$ such that $g'(a) \neq 0$. For any $x \in \mathbb{R}$, we can find ξ between a and x, by Taylor's theorem, which shows that

$$g(x) = g(a) + g'(a)(x - a) + \frac{g''(\xi)(x - a)^2}{2!} \le g(a) + g'(a)(x - a).$$

Now by taking $x = a - \frac{2 + g(a)}{g'(a)}$, we have

$$g(x) \le g(a) + g'(a) \left(a - \frac{2 + g(a)}{g'(a)} - a \right) = -2$$

which is impossible since $g(x) = \sin(f(x)) \ge -1$ for any $x \in \mathbb{R}$. Therefore g(x) is a constant function which implies f(x) is a constant function. It is easy to see that any constant function satisfies the condition.

8. (VJMC 2013 I P1) Let $g = f^2 - 2\sin x$. Then

$$|g| \le f^2 + 2 \le M^2 + 2$$

 $g' = 2ff' - 2\cos x \ge 0.$

So g(x) is a bounded monotonic increasing function which implies $\lim_{x\to +\infty} g(x)$ exists. It follows that $\lim_{x\to +\infty} (f(x))^2 = \lim_{x\to +\infty} (g(x)+\sin x)$ does not exist. Therefore $\lim_{x\to +\infty} f(x)$ does not exist.