IMC 2023 Training Calculus

Problems

1. (IMC 2020 Problem 5) Find all twice continuously differentiable functions $f: \mathbb{R} \rightarrow$ $(0,+\infty)$ satisfying

$$
f^{\prime \prime}(x) f(x) \geq 2\left(f^{\prime}(x)\right)^{2}
$$

for all $x \in \mathbb{R}$.
2. (IMC 2019 Problem 3) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a twice differentiable function such that

$$
2 f^{\prime}(x)+x f^{\prime \prime}(x) \geq 1 \text { for } x \in(-1,1)
$$

Prove that

$$
\int_{-1}^{1} x f(x) d x \geq \frac{1}{3}
$$

3. (IMC 2019 Problem 6) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that g is differentiable. Assume that

$$
\left(f(0)-g^{\prime}(0)\right)\left(g^{\prime}(1)-f(1)\right)>0 .
$$

Show that there exists a point $c \in(0,1)$ such that $f(c)=g^{\prime}(c)$.
4. (IMC 2018 Problem 4) Find all differentiable functions $f:(0, \infty) \rightarrow \mathbb{R}$ such that

$$
f(b)-f(a)=(b-a) f^{\prime}(\sqrt{a b}) \text { for all } a, b>0
$$

5. (Putnam 2015 B 1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a three times differentiable function such that f has at least five distinct real zeros. Prove that $f+6 f^{\prime}+12 f^{\prime \prime}+8 f^{\prime \prime \prime}$ has at least two distinct real zeros.
6. (Putnam 1997 B2) Let f be a twice differentiable real valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x)
$$

where $g(x)>0$ for all real x. Prove that $|f(x)|$ is bounded.
7. (VJMC 2019 II P2) Find all twice differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime \prime}(x) \cos (f(x)) \geq\left(f^{\prime}(x)\right)^{2} \sin (f(x)) \text { for every } x \in \mathbb{R}
$$

8. (VJMC 2013 I P1) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function with $|f(x)| \leq M$ and

$$
f(x) f^{\prime}(x) \geq \cos x \text { for } x \in[0, \infty)
$$

where $M>0$. Prove that $f(x)$ does not have a limit as $x \rightarrow \infty$.

Exercise

1. (IMC2022 Problem 1) Let $f:[0,1] \rightarrow(0, \infty)$ be an integrable function such that $f(x) \cdot f(1-x)=1$ for all $x \in[0,1]$. Prove that

$$
\int_{0}^{1} f(x) d x \geq 1
$$

2. (IMC2021 Problem 4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Suppose that for any $\varepsilon>0$, there exists a function $g: \mathbb{R} \rightarrow(0, \infty)$ such that for every pair (x, y) of real numbers,

$$
\text { if }|x-y|<\min \{g(x), g(y)\}, \text { then }|f(x)-f(y)|<\varepsilon
$$

Prove that f is the pointwise limit of a sequence of continuous $\mathbb{R} \rightarrow \mathbb{R}$ functions, i.e., there is a sequence h_{1}, h_{2}, \ldots of continuous $\mathbb{R} \rightarrow \mathbb{R}$ functions such that $\lim _{n \rightarrow \infty} h_{n}(x)=$ $f(x)$ for every $x \in \mathbb{R}$.
3. (IMC2021 Problem 7) Let $D \subset \mathbb{C}$ be an open set containing the closed unit disk $\{z:|z| \leq 1\}$. Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that

$$
|f(0)| \leq \max _{|z|=1}|f(z) p(z)|
$$

4. (Putnam 2018 A5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$ and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exists a positive integer n and a real number x such that $f^{(n)}(x)<0$.
5. (Putnam 2017 A3) Let a and b be real numbers with $a<b$, and let f and g be continuous functions from $[a, b]$ to $(0, \infty)$ such that $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$ but $f \neq g$. For every positive integer n, define

$$
I_{n}=\int_{a}^{b} \frac{(f(x))^{n+1}}{(g(x))^{n}} d x
$$

Show that $I_{1}, I_{2}, I_{3}, \ldots$ is an increasing sequence with $\lim _{n \rightarrow \infty} I_{n}=\infty$.
6. (Putnam 2016 A3) Suppose that f is a function from \mathbb{R} to \mathbb{R} such that

$$
f(x)+f\left(1-\frac{1}{x}\right)=\arctan x
$$

for all real $x \neq 0$. (As usual, $y=\arctan x$ means $-\pi / 2<y<\pi / 2$ and $\tan y=x$.) Find

$$
\int_{0}^{1} f(x) d x
$$

7. (VJMC 2017 I P4) Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a continuously differentiable function satisfying $f(x) \leq x^{2} \log (x)$ and $f^{\prime}(x)>0$ for every $x \in(1, \infty)$. Prove that

$$
\int_{1}^{\infty} \frac{1}{f^{\prime}(x)} d x=\infty
$$

8. (VJMC 2017 II P2) Prove or disprove the following statement. If $g:(0,1) \rightarrow(0,1)$ is an increasing function and satisfies $g(x)>x$ for all $x \in(0,1)$, then there exists a continuous function $f:(0,1) \rightarrow$ mathbb R satisfying $f(x)<f(g(x))$ for all $x \in$ $(0,1)$, but f is not an increasing function.
9. (VJMC 2016 I P1) Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a continuously differentiable function. Prove that there exists $\xi \in(0,1)$ such that

$$
e^{f^{\prime}(\xi)} f(0)^{f(\xi)}=f(1)^{f(\xi)} .
$$

10. (VJMC 2016 II P4) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuously
11. (SMMC 2021 B3) Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following two properties.
(i) The Riemann integral $\int_{a}^{b} f(t) d t$ exists for all real numbers $a<b$.
(ii) For every real number x and every integer $n \geq 1$ we have

$$
f(x)=\frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(t) d t
$$

IMC 2023 Training
 Calculus
 Solutions

Useful theorems

Theorem 1 (Rolle's theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that

- f is continuous on $[a, b]$, and
- f is differentiable on (a, b), and
- $f(a)=f(b)$.

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Theorem 2 (Lagrange's mean value theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that

- f is continuous on $[a, b]$, and
- f is differentiable on (a, b).

Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 3 (Darboux's theorem). Let $f(x)$ be a function such that $f^{\prime}(x)$ exists for any $x \in[a, b]$. Then for any y between $f^{\prime}(a)$ and $f^{\prime}(b)$, there exists $\xi \in(a, b)$ such that $f^{\prime}(\xi)=y$.

Theorem 4 (Taylor's theorem). Let a and x be any real numbers. Let $f(x)$ be a continuous function such that the $n+1$-th derivative of $f(x)$ exists between a and x. Then there exists ξ between a and x such that
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\cdots+\frac{f^{(n)}(a)(x-a)^{n}}{n!}+\frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}$.

Solutions

1. (IMC 2020 Problem 5) Let $g(x)=\frac{1}{f(x)}$. We are going to prove that g is constant and hence f is constant. Observe that

$$
\begin{aligned}
g^{\prime} & =-\frac{f^{\prime}}{f^{2}} \\
g^{\prime \prime} & =\frac{2\left(f^{\prime}\right)^{2}-f f^{\prime \prime}}{f^{3}} \leq 0
\end{aligned}
$$

Suppose there exists $a \in \mathbb{R}$ such that $g^{\prime}(a) \neq 0$. For any $x \in \mathbb{R}$, we can find ξ between a and x, by Taylor's theorem, which shows that

$$
g(x)=g(a)+g^{\prime}(a)(x-a)+\frac{g^{\prime \prime}(\xi)(x-a)^{2}}{2!} \leq g(a)+g^{\prime}(a)(x-a)
$$

Then by taking $x=a-\frac{2 g(a)}{g^{\prime}(a)}$, we have

$$
g(x) \leq g(a)+g^{\prime}(a)\left(\left(a-\frac{2 g(a)}{g^{\prime}(a)}\right)-a\right)=-g(a)<0
$$

which is impossible since $g(x)=\frac{1}{f(x)}>0$ for any $x \in \mathbb{R}$. It follows that $g^{\prime}(x)=0$ for any $x \in \mathbb{R}$. Therefore $g(x)$ is a constant function which implies $f(x)$ is a constant function.
2. (IMC 2019 Problem 3) Let

$$
g(x)=x f(x)-\frac{x^{2}}{2}
$$

Observe that

$$
\begin{aligned}
g^{\prime}(x) & =f(x)+x f^{\prime}(x)-x \\
g^{\prime \prime}(x) & =2 f^{\prime}(x)+x f^{\prime \prime}(x)-1 \geq 0
\end{aligned}
$$

For any $x \in(-1,1)$, we can find ξ between 0 and x, by Taylor's theorem, which shows that

$$
g(x)=g(0)+g^{\prime}(0) x+\frac{g^{\prime \prime}(\xi) x^{2}}{2} \geq f(0) x
$$

Therefore

$$
\int_{-1}^{1} x f(x) d x=\int_{-1}^{1}\left(g(x)+\frac{x^{2}}{2}\right) d x \geq \int_{-1}^{1}\left(f(0) x+\frac{x^{2}}{2}\right) d x=\frac{1}{3}
$$

3. (IMC 2019 Problem 6) Let

$$
h(x)=\int_{0}^{x} f(t) d t-g(x) .
$$

Since $f(x)$ is continuous, by fundamental theorem of calculus, we have $h^{\prime}(x)=$ $f(x)-g^{\prime}(x)$ for any $x \in \mathbb{R}$. Using the assumption, we have

$$
h^{\prime}(0) h^{\prime}(1)=\left(f(0)-g^{\prime}(0)\right)\left(f(1)-g^{\prime}(1)\right)<0 .
$$

So $h^{\prime}(0)$ and $h^{\prime}(1)$ are of opposite signs. By the mean value theorem for derivatives (Darboux's theorem), there exists $0<c<1$ such that $h^{\prime}(c)=0$ which means $f(c)=g^{\prime}(c)$.
4. (IMC 2018 Problem 4) First we show that f is infinitely differentiable. For any $x \in(0,+\infty)$, by putting $a=\frac{x}{2}$ and $b=2 x$, we have

$$
f^{\prime}(x)=\frac{f(2 x)-f\left(\frac{x}{2}\right)}{\frac{3 x}{2}}
$$

Since $f(x)$ is differentiable, we see that $f^{\prime}(x)$ is differentiable which means $f(x)$ is twice differentiable. Using an inductive argument, we see that $f(x)$ is infinitely differentiable.
Now for any $t \in \mathbb{R}$, putting $b=e^{t} x$ and $a=e^{-t} x$, we have

$$
f\left(e^{t} x\right)-f\left(e^{-t} x\right)=\left(e^{t}-e^{-t}\right) x f^{\prime}(x)
$$

Differentiate the above equality with respect to t for 3 times, we have

$$
\begin{aligned}
e^{t} x f^{\prime}\left(e^{t} x\right)+e^{-t} x f^{\prime}\left(e^{-t} x\right) & =\left(e^{t}+e^{-t}\right) x f^{\prime}(x) \\
e^{2 t} x^{2} f^{\prime \prime}\left(e^{t} x\right)+e^{t} x f^{\prime}\left(e^{t} x\right)-e^{-2 t} x^{2} f^{\prime \prime}\left(e^{-t} x\right)-e^{-t} x f^{\prime}\left(e^{-t} x\right) & =\left(e^{t}-e^{-t}\right) x f^{\prime}(x) \\
e^{3 t} x^{3} f^{\prime \prime \prime}\left(e^{t} x\right)+3 e^{3 t} x^{2} f^{\prime \prime}\left(e^{t} x\right)+e^{t} x f^{\prime}\left(e^{t} x\right) & =\left(e^{t}+e^{-t}\right) x f^{\prime}(x) \\
+e^{-3 t} x^{3} f^{\prime \prime \prime}\left(e^{-t} x\right)+3 e^{-3 t} x^{2} f^{\prime \prime}\left(e^{-t} x\right)+e^{-t} x f^{\prime}\left(e^{-t} x\right) &
\end{aligned}
$$

Now putting $t=0$, we obtain

$$
\begin{aligned}
x^{3} f^{\prime \prime \prime}(x)+3 x^{2} f^{\prime \prime}(x)+x f^{\prime}(x) & =2 x f^{\prime}(x) \\
+x^{3} f^{\prime \prime \prime}(x)+3 x^{2} f^{\prime \prime}(x)+x f^{\prime}(x) & =0 \\
2 x^{3} f^{\prime \prime \prime}(x)+6 x^{2} f^{\prime \prime}(x) & =0 \\
x f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x) & =0 \\
(x f(x))^{\prime \prime \prime} & =0 .
\end{aligned}
$$

It follows that $x f(x)=C_{2} x^{2}+C_{1} x+C_{0}$ and therefore

$$
f(x)=C_{2} x+C_{1}+\frac{C_{0}}{x}
$$

where C_{0}, C_{1}, C_{2} are arbitrary constants. It is easy to verify that all functions of this form satisfy the condition.
5. (Putnam 2015 B1) Let $g(x)=e^{\frac{x}{2}} f(x)$. Then g has at least 5 distinct real zeros. By Rolle's theorem, $g^{\prime}(x)$ has at least 4 distinct zeros. By repeating the argument, $g^{\prime \prime}(x)$ has at least 3 distinct zeros and $g^{\prime \prime \prime}(x)$ has at least 2 zeros. Now

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{2} e^{\frac{x}{2}}\left(f(x)+2 f^{\prime}(x)\right) \\
g^{\prime \prime}(x) & =\frac{1}{4} e^{\frac{x}{2}}\left(f(x)+4 f^{\prime}(x)+4 f^{\prime \prime}(x)\right) \\
g^{\prime \prime \prime}(x) & =\frac{1}{8} e^{\frac{x}{2}}\left(f(x)+6 f^{\prime}(x)+12 f^{\prime \prime}(x)+8 f^{\prime \prime \prime}(x)\right)
\end{aligned}
$$

Thus $f(x)+6 f^{\prime}(x)+12 f^{\prime \prime}(x)+8 f^{\prime \prime \prime}(x)=8 e^{-\frac{x}{2}} g^{\prime \prime \prime}(x)$ has at least 2 distinct zeros.
6. (Putnam 1997 B2) Let $h=f^{2}+\left(f^{\prime}\right)^{2}$. Then

$$
h^{\prime}=2 f f^{\prime}+2 f^{\prime} f^{\prime \prime}=2 f^{\prime}\left(f+f^{\prime \prime}\right)=-2 x g\left(f^{\prime}\right)^{2} .
$$

Thus $h^{\prime}(x) \geq 0$ when $x<0$ and $h^{\prime}(x) \leq 0$ when $x>0$. It follows that $h(x) \leq h(0)$ for any $x \in \mathbb{R}$. Therefore

$$
f^{2}=h^{2}-\left(f^{\prime}\right)^{2} \leq h^{2} \leq(h(0))^{2}
$$

which implies $|f(x)|$ is bounded.
7. (VJMC 2019 II P2) Let $g(x)=\sin (f(x))$. Then

$$
\begin{aligned}
g^{\prime} & =f^{\prime} \cos f \\
g^{\prime \prime} & =f^{\prime \prime} \cos f-\left(f^{\prime}\right)^{2} \sin f \geq 0
\end{aligned}
$$

Suppose there exists $a \in \mathbb{R}$ such that $g^{\prime}(a) \neq 0$. For any $x \in \mathbb{R}$, we can find ξ between a and x, by Taylor's theorem, which shows that

$$
g(x)=g(a)+g^{\prime}(a)(x-a)+\frac{g^{\prime \prime}(\xi)(x-a)^{2}}{2!} \leq g(a)+g^{\prime}(a)(x-a)
$$

Now by taking $x=a-\frac{2+g(a)}{g^{\prime}(a)}$, we have

$$
g(x) \leq g(a)+g^{\prime}(a)\left(a-\frac{2+g(a)}{g^{\prime}(a)}-a\right)=-2
$$

which is impossible since $g(x)=\sin (f(x)) \geq-1$ for any $x \in \mathbb{R}$. Therefore $g(x)$ is a constant function which implies $f(x)$ is a constant function. It is easy to see that any constant function satisfies the condition.
8. (VJMC 2013 I P1) Let $g=f^{2}-2 \sin x$. Then

$$
\begin{aligned}
|g| & \leq f^{2}+2 \leq M^{2}+2 \\
g^{\prime} & =2 f f^{\prime}-2 \cos x \geq 0
\end{aligned}
$$

So $g(x)$ is a bounded monotonic increasing function which implies $\lim _{x \rightarrow+\infty} g(x)$ exists. It follows that $\lim _{x \rightarrow+\infty}(f(x))^{2}=\lim _{x \rightarrow+\infty}(g(x)+\sin x)$ does not exist. Therefore $\lim _{x \rightarrow+\infty} f(x)$ does not exist.

