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IMC 2023 Training
Calculus

Problems

1. (IMC 2020 Problem 5) Find all twice continuously differentiable functions f : R→
(0,+∞) satisfying

f ′′(x)f(x) ≥ 2(f ′(x))2

for all x ∈ R.

2. (IMC 2019 Problem 3) Let f : (−1, 1) → R be a twice differentiable function such
that

2f ′(x) + xf ′′(x) ≥ 1 for x ∈ (−1, 1).

Prove that ∫ 1

−1
xf(x)dx ≥ 1

3
.

3. (IMC 2019 Problem 6) Let f, g : R → R be continuous functions such that g is
differentiable. Assume that

(f(0)− g′(0))(g′(1)− f(1)) > 0.

Show that there exists a point c ∈ (0, 1) such that f(c) = g′(c).

4. (IMC 2018 Problem 4) Find all differentiable functions f : (0,∞)→ R such that

f(b)− f(a) = (b− a)f ′(
√
ab) for all a, b > 0.

5. (Putnam 2015 B1) Let f : R→ R be a three times differentiable function such that
f has at least five distinct real zeros. Prove that f + 6f ′ + 12f ′′ + 8f ′′′ has at least
two distinct real zeros.

6. (Putnam 1997 B2) Let f be a twice differentiable real valued function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x),

where g(x) > 0 for all real x. Prove that |f(x)| is bounded.

7. (VJMC 2019 II P2) Find all twice differentiable functions f : R→ R such that

f ′′(x) cos(f(x)) ≥ (f ′(x))2 sin(f(x)) for every x ∈ R.

8. (VJMC 2013 I P1) Let f : [0,∞)→ R be a differentiable function with |f(x)| ≤M
and

f(x)f ′(x) ≥ cosx for x ∈ [0,∞),

where M > 0. Prove that f(x) does not have a limit as x→∞.
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Exercise

1. (IMC2022 Problem 1) Let f : [0, 1] → (0,∞) be an integrable function such that
f(x) · f(1− x) = 1 for all x ∈ [0, 1]. Prove that∫ 1

0

f(x)dx ≥ 1.

2. (IMC2021 Problem 4) Let f : R → R be a function. Suppose that for any ε > 0,
there exists a function g : R→ (0,∞) such that for every pair (x, y) of real numbers,

if |x− y| < min{g(x), g(y)}, then |f(x)− f(y)| < ε.

Prove that f is the pointwise limit of a sequence of continuous R→ R functions, i.e.,
there is a sequence h1, h2, . . . of continuous R→ R functions such that lim

n→∞
hn(x) =

f(x) for every x ∈ R.

3. (IMC2021 Problem 7) Let D ⊂ C be an open set containing the closed unit disk
{z : |z| ≤ 1}. Let f : D → C be a holomorphic function, and let p(z) be a monic
polynomial. Prove that

|f(0)| ≤ max
|z|=1
|f(z)p(z)|.

4. (Putnam 2018 A5) Let f : R→ R be an infinitely differentiable function satisfying
f(0) = 0, f(1) = 1 and f(x) ≥ 0 for all x ∈ R. Show that there exists a positive
integer n and a real number x such that f (n)(x) < 0.

5. (Putnam 2017 A3) Let a and b be real numbers with a < b, and let f and g

be continuous functions from [a, b] to (0,∞) such that
∫ b
a
f(x)dx =

∫ b
a
g(x)dx but

f 6= g. For every positive integer n, define

In =

∫ b

a

(f(x))n+1

(g(x))n
dx.

Show that I1, I2, I3, . . . is an increasing sequence with lim
n→∞

In =∞.

6. (Putnam 2016 A3) Suppose that f is a function from R to R such that

f(x) + f

(
1− 1

x

)
= arctanx

for all real x 6= 0. (As usual, y = arctanx means −π/2 < y < π/2 and tan y = x.)
Find ∫ 1

0

f(x)dx.

7. (VJMC 2017 I P4) Let f : (1,∞) → R be a continuously differentiable function
satisfying f(x) ≤ x2 log(x) and f ′(x) > 0 for every x ∈ (1,∞). Prove that∫ ∞

1

1

f ′(x)
dx =∞.
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8. (VJMC 2017 II P2) Prove or disprove the following statement. If g : (0, 1)→ (0, 1)
is an increasing function and satisfies g(x) > x for all x ∈ (0, 1), then there exists
a continuous function f : (0, 1) → mathbbR satisfying f(x) < f(g(x)) for all x ∈
(0, 1), but f is not an increasing function.

9. (VJMC 2016 I P1) Let f : R → (0,∞) be a continuously differentiable function.
Prove that there exists ξ ∈ (0, 1) such that

ef
′(ξ)f(0)f(ξ) = f(1)f(ξ).

10. (VJMC 2016 II P4) Let f : [0,∞)→ R be a continuously

11. (SMMC 2021 B3) Determine all functions f : R→ R that satisfy the following two
properties.

(i) The Riemann integral

∫ b

a

f(t)dt exists for all real numbers a < b.

(ii) For every real number x and every integer n ≥ 1 we have

f(x) =
n

2

∫ x+ 1
n

x− 1
n

f(t)dt.
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IMC 2023 Training
Calculus
Solutions

Useful theorems

Theorem 1 (Rolle’s theorem). Let f : [a, b]→ R be a function such that

� f is continuous on [a, b], and

� f is differentiable on (a, b), and

� f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

Theorem 2 (Lagrange’s mean value theorem). Let f : [a, b]→ R be a function such that

� f is continuous on [a, b], and

� f is differentiable on (a, b).

Then there exists ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Theorem 3 (Darboux’s theorem). Let f(x) be a function such that f ′(x) exists for any
x ∈ [a, b]. Then for any y between f ′(a) and f ′(b), there exists ξ ∈ (a, b) such that
f ′(ξ) = y.

Theorem 4 (Taylor’s theorem). Let a and x be any real numbers. Let f(x) be a continu-
ous function such that the n+ 1-th derivative of f(x) exists between a and x. Then there
exists ξ between a and x such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
+ · · ·+ f (n)(a)(x− a)n

n!
+
f (n+1)(ξ)(x− a)n+1

(n+ 1)!
.
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Solutions

1. (IMC 2020 Problem 5) Let g(x) =
1

f(x)
. We are going to prove that g is constant

and hence f is constant. Observe that

g′ = − f
′

f 2

g′′ =
2(f ′)2 − ff ′′

f 3
≤ 0.

Suppose there exists a ∈ R such that g′(a) 6= 0. For any x ∈ R, we can find ξ
between a and x, by Taylor’s theorem, which shows that

g(x) = g(a) + g′(a)(x− a) +
g′′(ξ)(x− a)2

2!
≤ g(a) + g′(a)(x− a).

Then by taking x = a− 2g(a)

g′(a)
, we have

g(x) ≤ g(a) + g′(a)

((
a− 2g(a)

g′(a)

)
− a
)

= −g(a) < 0

which is impossible since g(x) =
1

f(x)
> 0 for any x ∈ R. It follows that g′(x) = 0

for any x ∈ R. Therefore g(x) is a constant function which implies f(x) is a constant
function.

2. (IMC 2019 Problem 3) Let

g(x) = xf(x)− x2

2
,

Observe that

g′(x) = f(x) + xf ′(x)− x
g′′(x) = 2f ′(x) + xf ′′(x)− 1 ≥ 0.

For any x ∈ (−1, 1), we can find ξ between 0 and x, by Taylor’s theorem, which
shows that

g(x) = g(0) + g′(0)x+
g′′(ξ)x2

2
≥ f(0)x.

Therefore∫ 1

−1
xf(x)dx =

∫ 1

−1

(
g(x) +

x2

2

)
dx ≥

∫ 1

−1

(
f(0)x+

x2

2

)
dx =

1

3
.
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3. (IMC 2019 Problem 6) Let

h(x) =

∫ x

0

f(t)dt− g(x).

Since f(x) is continuous, by fundamental theorem of calculus, we have h′(x) =
f(x)− g′(x) for any x ∈ R. Using the assumption, we have

h′(0)h′(1) = (f(0)− g′(0))(f(1)− g′(1)) < 0.

So h′(0) and h′(1) are of opposite signs. By the mean value theorem for derivatives
(Darboux’s theorem), there exists 0 < c < 1 such that h′(c) = 0 which means
f(c) = g′(c).

4. (IMC 2018 Problem 4) First we show that f is infinitely differentiable. For any

x ∈ (0,+∞), by putting a =
x

2
and b = 2x, we have

f ′(x) =
f(2x)− f(x

2
)

3x
2

.

Since f(x) is differentiable, we see that f ′(x) is differentiable which means f(x)
is twice differentiable. Using an inductive argument, we see that f(x) is infinitely
differentiable.

Now for any t ∈ R, putting b = etx and a = e−tx, we have

f(etx)− f(e−tx) = (et − e−t)xf ′(x).

Differentiate the above equality with respect to t for 3 times, we have

etxf ′(etx) + e−txf ′(e−tx) = (et + e−t)xf ′(x)

e2tx2f ′′(etx) + etxf ′(etx)− e−2tx2f ′′(e−tx)− e−txf ′(e−tx) = (et − e−t)xf ′(x)

e3tx3f ′′′(etx) + 3e3tx2f ′′(etx) + etxf ′(etx)
+e−3tx3f ′′′(e−tx) + 3e−3tx2f ′′(e−tx) + e−txf ′(e−tx)

= (et + e−t)xf ′(x)

Now putting t = 0, we obtain

x3f ′′′(x) + 3x2f ′′(x) + xf ′(x)
+x3f ′′′(x) + 3x2f ′′(x) + xf ′(x)

= 2xf ′(x)

2x3f ′′′(x) + 6x2f ′′(x) = 0

xf ′′′(x) + 3f ′′(x) = 0

(xf(x))′′′ = 0.

It follows that xf(x) = C2x
2 + C1x+ C0 and therefore

f(x) = C2x+ C1 +
C0

x

where C0, C1, C2 are arbitrary constants. It is easy to verify that all functions of
this form satisfy the condition.
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5. (Putnam 2015 B1) Let g(x) = e
x
2 f(x). Then g has at least 5 distinct real zeros.

By Rolle’s theorem, g′(x) has at least 4 distinct zeros. By repeating the argument,
g′′(x) has at least 3 distinct zeros and g′′′(x) has at least 2 zeros. Now

g′(x) =
1

2
e

x
2 (f(x) + 2f ′(x))

g′′(x) =
1

4
e

x
2 (f(x) + 4f ′(x) + 4f ′′(x))

g′′′(x) =
1

8
e

x
2 (f(x) + 6f ′(x) + 12f ′′(x) + 8f ′′′(x)).

Thus f(x) + 6f ′(x) + 12f ′′(x) + 8f ′′′(x) = 8e−
x
2 g′′′(x) has at least 2 distinct zeros.

6. (Putnam 1997 B2) Let h = f 2 + (f ′)2. Then

h′ = 2ff ′ + 2f ′f ′′ = 2f ′(f + f ′′) = −2xg(f ′)2.

Thus h′(x) ≥ 0 when x < 0 and h′(x) ≤ 0 when x > 0. It follows that h(x) ≤ h(0)
for any x ∈ R. Therefore

f 2 = h2 − (f ′)2 ≤ h2 ≤ (h(0))2

which implies |f(x)| is bounded.

7. (VJMC 2019 II P2) Let g(x) = sin(f(x)). Then

g′ = f ′ cos f

g′′ = f ′′ cos f − (f ′)2 sin f ≥ 0.

Suppose there exists a ∈ R such that g′(a) 6= 0. For any x ∈ R, we can find ξ
between a and x, by Taylor’s theorem, which shows that

g(x) = g(a) + g′(a)(x− a) +
g′′(ξ)(x− a)2

2!
≤ g(a) + g′(a)(x− a).

Now by taking x = a− 2 + g(a)

g′(a)
, we have

g(x) ≤ g(a) + g′(a)

(
a− 2 + g(a)

g′(a)
− a
)

= −2

which is impossible since g(x) = sin(f(x)) ≥ −1 for any x ∈ R. Therefore g(x) is a
constant function which implies f(x) is a constant function. It is easy to see that
any constant function satisfies the condition.

8. (VJMC 2013 I P1) Let g = f 2 − 2 sinx. Then

|g| ≤ f 2 + 2 ≤M2 + 2

g′ = 2ff ′ − 2 cosx ≥ 0.

So g(x) is a bounded monotonic increasing function which implies lim
x→+∞

g(x) ex-

ists. It follows that lim
x→+∞

(f(x))2 = lim
x→+∞

(g(x) + sinx) does not exist. Therefore

lim
x→+∞

f(x) does not exist.


