Some Practice Problems on Polynomials

Problem 1 Represent

$$
S\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{1 \leq i, j \leq n \\ i \neq j}} x_{i}^{3} x_{j}
$$

as a polynomial in the elementary symmetric polynomials.

Problem 2 Let $P(x)=x^{3}+a x^{2}+b x+c$ have roots x_{1}, x_{2}, x_{3}. Find the polynomial $Q(x)=$ $x^{3}+\alpha x^{2}+\beta x+\gamma$ of degree 3 that has roots $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}$.

Problem 3 Let $n \geq 3$ and $x_{1}, \ldots, x_{n} \in \mathbb{C}$ be all roots of the polynomial

$$
p(x)=x^{n}-2 x^{n-1}+3 x-1
$$

What is

$$
\sum_{i \neq j} \frac{x_{i}}{x_{j}}
$$

where the sum is taken over all ordered pairs $(i, j) \in\{1, \ldots, n\}$ except for $i=j$.

Problem 4 Find all pairs of integers $m, n \in \mathbb{N}$ such that the polynomial

$$
P(x)=1+x+x^{2}+\ldots+x^{m}
$$

divides the polynomial

$$
Q(x)=1+x^{n}+x^{2 n} \ldots+x^{m n}
$$

