IMC Selection Test 2

Solution to Problem 1. Answer: 2^{n-1}. This is clearly true for $n=1$ and we can use induction on n to prove this. Let $n \geq 2$. For any sequence $\left(a_{1}, \ldots, a_{n}\right)$ as in the question, we remove the first element a_{1} and replace each entry $a_{j}>a_{i}$ by $a_{j}-1$. This way we obtain a legal sequence for $n-1$. On the other hand, any $(n-1)$-sequence is obtained precisely 2 times: if it starts with $a \in\{1, \ldots, n-1\}$ we can "reinsert" either a or $a+1$. Thus the number of legal sequences for n is twice as large as for $n-1$.
An alternative solution can be obtained by proving (e.g. via induction on n) that each legal sequence ends in 1 or n.

Solution to Problem 2. If a_{0} is a fixed point for f, we are done. Thus we may assume $f\left(a_{0}\right) \neq a_{0}$, and can furthermore assume wlog $f\left(a_{0}\right)>a_{0}$.

Now if $f(x) \leq x$ for some $x>a_{0}$, then the Intermediate Value Theorem applied to $g(x):=f(x)-x$ implies f has a fixed point at some $c \in\left[a_{0}, x\right]$. Thus, we may assume $f(x)>x$ for all $x>a_{0}$, and so clearly $a_{n+1}>a_{n}$ for all n.

We now prove that the sequence $\left(a_{n}\right)$ is bounded by $L:=\lim _{n \rightarrow \infty} \frac{a_{0}+\cdots+a_{n}}{n}$ and thus converges. Assume for contradiction that $a_{\ell}>L$ for some $\ell \geq 0$. Therefore $a_{i}>a_{\ell}$ for all $i>\ell$, and thus

$$
\frac{a_{0}+\cdots+a_{i}}{i}=\frac{a_{0}+\cdots+a_{\ell}}{i}+\frac{a_{\ell+1}+\cdots+a_{i}}{i}>\frac{a_{0}+\cdots+a_{\ell}}{i}+\frac{(i-\ell+1) a_{\ell}}{i}
$$

for any $i \geq \ell$. Taking the limit as $i \rightarrow \infty$ yields $L \geq a_{\ell}$, which is a contradiction. Thus $\left(a_{n}\right)$ is an increasing bounded sequence, and therefore converges to some limit $a \in \mathbb{R}$. Thus, as f is continuous, a is a fixed point of f.

Solution to Problem 3.

$$
\begin{gathered}
\frac{(r-1)\left(4 a_{r}-r a_{r-1}\right) a_{r-2}}{a_{r} a_{r-1}}=4 \Rightarrow \\
\frac{4(r-1) a_{r}-(r-1) r a_{r-1}}{a_{r} a_{r-1}}=\frac{4}{a_{r-2}} \Rightarrow \\
\frac{4(r-1)}{a_{r-1}}-\frac{(r-1) r}{a_{r}}=\frac{4}{a_{r-2}} \Rightarrow \frac{4(r-1)!}{a_{r-1}}-\frac{r!}{a_{r}}=\frac{4(r-2)!}{a_{r-2}} .
\end{gathered}
$$

By setting $b_{r}:=\frac{r!}{a_{r}}$ and solving the characteristic equation we find that $b_{r}=c_{1} 2^{r}+c_{2} r 2^{r}$, and by the initial conditions we deduce that $b_{r}=2^{r} \Rightarrow a_{r}=\frac{r!}{2^{r}}$. By Legendre's formula, the exponent of 2 in $r!$ is $\sum_{i=1}^{\infty}\left\lfloor\frac{r}{2^{i}}\right\rfloor<r$, therefore a_{r} is never an integer for $r>0$.

Solution to Problem 4. We have

$$
S=\sum_{r=0}^{\lfloor n / 2\rfloor} \frac{n!}{(r!)^{2}(n-2 r)!} 2^{n-2 r}=\sum_{r=0}^{\lfloor n / 2\rfloor}\binom{n}{r}\binom{n-r}{r} 2^{n-2 r} .
$$

Thus S is the constant term (that is, the coefficient at x^{0}) when we expand $(x+1 / x+2)^{n}$. Indeed, in order to get x^{0}, we have for some r with $0 \leq r \leq n / 2$ pick r times x, having $\binom{n}{r}$ choices here, then pick r times $1 / x$ (having $\binom{n-r}{r}$ choices) with all these choices giving the same contribution $2^{n-2 r}$ to the constant term.
Since $(x+1 / x+2)^{n}=(1+x)^{2 n} / x^{n}, S$ is the coefficient at x^{n} in $(1+x)^{2 n}$ which is $\binom{2 n}{n}$ by the Binomial Theorem.

