
IMC Selection Test 3

Solution to Problem 1. For any n ≥ 1, we can define positive integers An, Bn such
that (1 +

√
7)n = An + Bn

√
7. We prove by induction that gcd(A2k+1, B2k+1) = 2k for

all k ≥ 0. Clearly gcd(A1, B1) = 1. Now assume gcd(A2k+1, B2k+1) = 2k for some k ≥ 0.
We note that

A2k+3 +B2k+3

√
7 = (8 + 2

√
7)(A2k+1 +B2k+1

√
7)

= (8A2k+1 + 14B2k+1) + (2A2k+1 + 8B2k+1)
√
7

thus A2k+3 = 8A2k+1 + 14B2k+1 and B2k+3 = 2A2k+1 + 8B2k+1.

Firstly, its clear by induction that A2k+1, B2k+1 ≡ 1 (mod 3), for all k ≥ 0, thus 3 cannot
divide gcd(A2k+1, B2k+1) for any k. Now, for any positive integer d, we have

d | gcd(A2k+3, B2k+3) ⇐⇒ d | 8A2k+1 + 14B2k+1 and d | 2A2k+1 + 8B2k+1

⇐⇒ d | 2A2k+1 and d | 2B2k+1 (as 3 ̸ | d)
⇐⇒ d | 2 gcd(A2k+1, B2k+1)

which proves gcd(A2k+3, B2k+3) = 2 gcd(A2k+1, B2k+1) = 2k+1, thus proving the induction
step. Therefore, gcd(A2023, B2023) = 21011.

Solution to Problem 2. The matrix

M =


0 1 · · · 1
−1
... A
−1


is a skew-symmetric matrix of odd order and, therefore, its determinant vanishes (which
follows from detM = detMT = det(−M) = − detM). Let J denote the all-1 matrix.
Thus we have for every x ∈ R that

detA = det


1 0 · · · 0
−x
... A

−x

 = det


1 0 · · · 0
−x
... A

−x

+ det


0 1 · · · 1
−x
... A

−x



= det


1 1 · · · 1
−x
... A

−x

 = det


1 0 · · · 0
−x
... A+ xJ

−x

 = det(A+ xJ),

as required.

Here is another solution. Let f(x) = det(A + xJ). Then f is a polynomial. On the one
hand, since n is even, we have f(−x) = det(A−xJ) = det(AT −xJT ) = det(−A−xJ) =

1



det(A + xJ) = f(x). Thus f(x) has only even degree terms. On the other hand, by
subtracting the first row from all other rows, we also have

f(x) = det(A+ xJ) = det


a11 + x a12 + x · · · a1n + x
a21 + x a22 + x · · · a2n + x

...
...

...
...

an1 + x an2 + x · · · ann + x



= det


a11 + x a12 + x · · · a1n + x
a21 − a11 a22 − a12 · · · a2n − a1n

...
...

...
...

an1 − a11 an2 − a12 · · · ann − a1n

 .

So f(x) is a polynomial of degree at most 1. Hence f(x) = det(A + xJ) must be a
constant.

Solution to Problem 3. We show that the image of g is (log 2,∞).

First, we show g is strictly increasing. Let F : (0,∞) → R be given by F (x) =
∫ x

1
f(t)
t
dt.

Then by the Fundamental Theorem of Calculus, F (x) is differentiable with F ′(x) = f(x)
x
.

Since g(x) = F (2x) − F (x), we have g is differentiable and g′(x) = 2F ′(2x) − F ′(x) =
f(2x)−f(x)

x
> 0, as required. Therefore, it suffices to show that limx→∞ g(x) = ∞ and

limx→0+ g(x) = log 2.

We have g(x) =
∫ 2x

x
f(t)
t
dt >

∫ 2x

x
f(x)
2x

dt = f(x)
2
. So limx→∞ g(x) ≥ 1

2
limx→∞ f(x) = ∞.

A more careful estimate gives g(x) =
∫ 2x

x
f(t)
t
dt < f(2x)

∫ 2x

x
1
t
dt = f(2x) log(2x

x
) =

f(2x) log 2 and g(x) =
∫ 2x

x
f(t)
t
dt > f(x)

∫ 2x

x
1
t
dt = f(x) log(2x

x
) = f(x) log 2. Since

limx→0+ f(x) = limx→0+ f(2x) = 1, by Squeeze Theorem we have limx→0+ g(x) = log 2.

Solution to Problem 4. Take n > 2023.

By Ramsey’s Theorem, there exists some number R1(n) such that every set of R1(n)
regions contains a subset of n regions which pairwise intersect (or are pairwise disjoint,
but by (iii) we know this not to occur).

By Ramsey’s theorem for hypergraphs, there exists some number R2(n) such that every
set of R2(n) regions contains a subset of n regions such that the intersection of any three
of them is empty (or the intersection of any three of them is non-empty, but by Helly’s
theorem and (iv) we know this not to occur).

Let R(n) := max{R1(n), R2(n)} and consider a set of R(n) regions of the family. Then
this contains n regions that pairwise intersect yet no three of which intersect. These cover
in total an area of size nP1 −

(
n
2

)
P2, which is negative for large enough n, unless P2 = 0,

which must therefore be true.

Suppose that one of the regions contains three non-collinear points. Then P1 > 0, so the
same holds for every region. Since P2 = 0, this implies that the pairwise intersections
are at the boundaries of the n regions. Consider the graph that has the n regions as its
vertices and has an edge between every two tangent regions. Then this graph must be
planar, a contradiction, since it is Kn.
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We conclude that none of the regions contains three non-collinear points, hence each
“region” is in fact a line segment. Indeed, a family like this can be made, for example,
by considering long enough segments on the set of lines y = akx + k with k ≥ 0, a1 > 0
and ak := ak−1 + pk, where pk is the kth prime number.
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