IMC Selection Test 3

Solution to Problem 1. For any $n \ge 1$, we can define positive integers A_n, B_n such that $(1 + \sqrt{7})^n = A_n + B_n \sqrt{7}$. We prove by induction that $gcd(A_{2k+1}, B_{2k+1}) = 2^k$ for all $k \ge 0$. Clearly $gcd(A_1, B_1) = 1$. Now assume $gcd(A_{2k+1}, B_{2k+1}) = 2^k$ for some $k \ge 0$. We note that

$$A_{2k+3} + B_{2k+3}\sqrt{7} = (8 + 2\sqrt{7})(A_{2k+1} + B_{2k+1}\sqrt{7})$$
$$= (8A_{2k+1} + 14B_{2k+1}) + (2A_{2k+1} + 8B_{2k+1})\sqrt{7}$$

thus $A_{2k+3} = 8A_{2k+1} + 14B_{2k+1}$ and $B_{2k+3} = 2A_{2k+1} + 8B_{2k+1}$.

Firstly, its clear by induction that $A_{2k+1}, B_{2k+1} \equiv 1 \pmod{3}$, for all $k \ge 0$, thus 3 cannot divide $gcd(A_{2k+1}, B_{2k+1})$ for any k. Now, for any positive integer d, we have

$$d | \operatorname{gcd}(A_{2k+3}, B_{2k+3}) \iff d | 8A_{2k+1} + 14B_{2k+1} \quad \text{and} \quad d | 2A_{2k+1} + 8B_{2k+1}$$
$$\iff d | 2A_{2k+1} \quad \text{and} \quad d | 2B_{2k+1} \quad (\text{as } 3 \not| d)$$
$$\iff d | 2\operatorname{gcd}(A_{2k+1}, B_{2k+1})$$

which proves $gcd(A_{2k+3}, B_{2k+3}) = 2 gcd(A_{2k+1}, B_{2k+1}) = 2^{k+1}$, thus proving the induction step. Therefore, $gcd(A_{2023}, B_{2023}) = 2^{1011}$.

Solution to Problem 2. The matrix

$$M = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ -1 & & & \\ \vdots & A & \\ -1 & & & \end{pmatrix}$$

is a skew-symmetric matrix of odd order and, therefore, its determinant vanishes (which follows from det $M = \det M^T = \det(-M) = -\det M$). Let J denote the all-1 matrix. Thus we have for every $x \in \mathbb{R}$ that

$$\det A = \det \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -x & & \\ \vdots & A \\ -x & & \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -x & & \\ \vdots & A \\ -x & & \end{pmatrix} + \det \begin{pmatrix} 0 & 1 & \cdots & 1 \\ -x & & \\ \vdots & A \\ -x & & \end{pmatrix} \\ = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ -x & & \\ \vdots & A \\ -x & & \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -x & & \\ \vdots & A + xJ \\ -x & & \end{pmatrix} = \det(A + xJ),$$

as required.

Here is another solution. Let $f(x) = \det(A + xJ)$. Then f is a polynomial. On the one hand, since n is even, we have $f(-x) = \det(A - xJ) = \det(A^T - xJ^T) = \det(-A - xJ) =$

det(A + xJ) = f(x). Thus f(x) has only even degree terms. On the other hand, by subtracting the first row from all other rows, we also have

$$f(x) = \det(A + xJ) = \det \begin{pmatrix} a_{11} + x & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} + x & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + x & a_{n2} + x & \cdots & a_{nn} + x \end{pmatrix}$$
$$= \det \begin{pmatrix} a_{11} + x & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} - a_{11} & a_{22} - a_{12} & \cdots & a_{2n} - a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} - a_{11} & a_{n2} - a_{12} & \cdots & a_{nn} - a_{1n} \end{pmatrix}$$

So f(x) is a polynomial of degree at most 1. Hence $f(x) = \det(A + xJ)$ must be a constant.

Solution to Problem 3. We show that the image of g is $(\log 2, \infty)$.

First, we show g is strictly increasing. Let $F: (0, \infty) \to \mathbb{R}$ be given by $F(x) = \int_1^x \frac{f(t)}{t} dt$. Then by the Fundamental Theorem of Calculus, F(x) is differentiable with $F'(x) = \frac{f(x)}{x}$. Since g(x) = F(2x) - F(x), we have g is differentiable and $g'(x) = 2F'(2x) - F'(x) = \frac{f(2x) - f(x)}{x} > 0$, as required. Therefore, it suffices to show that $\lim_{x\to\infty} g(x) = \infty$ and $\lim_{x\to 0^+} g(x) = \log 2$.

We have $g(x) = \int_x^{2x} \frac{f(t)}{t} dt > \int_x^{2x} \frac{f(x)}{2x} dt = \frac{f(x)}{2}$. So $\lim_{x \to \infty} g(x) \ge \frac{1}{2} \lim_{x \to \infty} f(x) = \infty$. A more careful estimate gives $g(x) = \int_x^{2x} \frac{f(t)}{t} dt < f(2x) \int_x^{2x} \frac{1}{t} dt = f(2x) \log(\frac{2x}{x}) = f(2x) \log(\frac{2x}{x}) = f(2x) \log 2$ and $g(x) = \int_x^{2x} \frac{f(t)}{t} dt > f(x) \int_x^{2x} \frac{1}{t} dt = f(x) \log(\frac{2x}{x}) = f(x) \log 2$. Since $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(2x) = 1$, by Squeeze Theorem we have $\lim_{x \to 0^+} g(x) = \log 2$.

Solution to Problem 4. Take n > 2023.

By Ramsey's Theorem, there exists some number $R_1(n)$ such that every set of $R_1(n)$ regions contains a subset of n regions which pairwise intersect (or are pairwise disjoint, but by (iii) we know this not to occur).

By Ramsey's theorem for hypergraphs, there exists some number $R_2(n)$ such that every set of $R_2(n)$ regions contains a subset of n regions such that the intersection of any three of them is empty (or the intersection of any three of them is non-empty, but by Helly's theorem and (iv) we know this not to occur).

Let $R(n) := \max\{R_1(n), R_2(n)\}$ and consider a set of R(n) regions of the family. Then this contains *n* regions that pairwise intersect yet no three of which intersect. These cover in total an area of size $nP_1 - {n \choose 2}P_2$, which is negative for large enough *n*, unless $P_2 = 0$, which must therefore be true.

Suppose that one of the regions contains three non-collinear points. Then $P_1 > 0$, so the same holds for every region. Since $P_2 = 0$, this implies that the pairwise intersections are at the boundaries of the *n* regions. Consider the graph that has the *n* regions as its vertices and has an edge between every two tangent regions. Then this graph must be planar, a contradiction, since it is K_n .

We conclude that none of the regions contains three non-collinear points, hence each "region" is in fact a line segment. Indeed, a family like this can be made, for example, by considering long enough segments on the set of lines $y = a_k x + k$ with $k \ge 0$, $a_1 > 0$ and $a_k := a_{k-1} + p_k$, where p_k is the k^{th} prime number.