IMC Selection Test 3

Solution to Problem 1. For any $n \geq 1$, we can define positive integers A_{n}, B_{n} such that $(1+\sqrt{7})^{n}=A_{n}+B_{n} \sqrt{7}$. We prove by induction that $\operatorname{gcd}\left(A_{2 k+1}, B_{2 k+1}\right)=2^{k}$ for all $k \geq 0$. Clearly $\operatorname{gcd}\left(A_{1}, B_{1}\right)=1$. Now assume $\operatorname{gcd}\left(A_{2 k+1}, B_{2 k+1}\right)=2^{k}$ for some $k \geq 0$. We note that

$$
\begin{aligned}
A_{2 k+3}+B_{2 k+3} \sqrt{7} & =(8+2 \sqrt{7})\left(A_{2 k+1}+B_{2 k+1} \sqrt{7}\right) \\
& =\left(8 A_{2 k+1}+14 B_{2 k+1}\right)+\left(2 A_{2 k+1}+8 B_{2 k+1}\right) \sqrt{7}
\end{aligned}
$$

thus $A_{2 k+3}=8 A_{2 k+1}+14 B_{2 k+1}$ and $B_{2 k+3}=2 A_{2 k+1}+8 B_{2 k+1}$.
Firstly, its clear by induction that $A_{2 k+1}, B_{2 k+1} \equiv 1(\bmod 3)$, for all $k \geq 0$, thus 3 cannot divide $\operatorname{gcd}\left(A_{2 k+1}, B_{2 k+1}\right)$ for any k. Now, for any positive integer d, we have

$$
\begin{aligned}
d \mid \operatorname{gcd}\left(A_{2 k+3}, B_{2 k+3}\right) & \Longleftrightarrow d \mid 8 A_{2 k+1}+14 B_{2 k+1} \quad \text { and } \quad d \mid 2 A_{2 k+1}+8 B_{2 k+1} \\
& \Longleftrightarrow d \mid 2 A_{2 k+1} \text { and } d \mid 2 B_{2 k+1} \quad(\text { as } 3 \nmid d) \\
& \Longleftrightarrow d \mid 2 \operatorname{gcd}\left(A_{2 k+1}, B_{2 k+1}\right)
\end{aligned}
$$

which proves $\operatorname{gcd}\left(A_{2 k+3}, B_{2 k+3}\right)=2 \operatorname{gcd}\left(A_{2 k+1}, B_{2 k+1}\right)=2^{k+1}$, thus proving the induction step. Therefore, $\operatorname{gcd}\left(A_{2023}, B_{2023}\right)=2^{1011}$.

Solution to Problem 2. The matrix

$$
M=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
-1 & & & \\
\vdots & & A & \\
-1 & &
\end{array}\right)
$$

is a skew-symmetric matrix of odd order and, therefore, its determinant vanishes (which follows from $\operatorname{det} M=\operatorname{det} M^{T}=\operatorname{det}(-M)=-\operatorname{det} M$). Let J denote the all-1 matrix. Thus we have for every $x \in \mathbb{R}$ that

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-x & & & \\
\vdots & & A & \\
-x & &
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-x & & & \\
\vdots & & A & \\
-x & &
\end{array}\right)+\operatorname{det}\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
-x & & & \\
\vdots & & A & \\
-x & & \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
-x & & & \\
\vdots & & A & \\
-x & &
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
-x & & \\
\vdots & A+x J \\
-x &
\end{array}\right)=\operatorname{det}(A+x J),
\end{array},\right.
\end{aligned}
$$

as required.
Here is another solution. Let $f(x)=\operatorname{det}(A+x J)$. Then f is a polynomial. On the one hand, since n is even, we have $f(-x)=\operatorname{det}(A-x J)=\operatorname{det}\left(A^{T}-x J^{T}\right)=\operatorname{det}(-A-x J)=$
$\operatorname{det}(A+x J)=f(x)$. Thus $f(x)$ has only even degree terms. On the other hand, by subtracting the first row from all other rows, we also have

$$
\begin{aligned}
f(x)=\operatorname{det}(A+x J) & =\operatorname{det}\left(\begin{array}{cccc}
a_{11}+x & a_{12}+x & \cdots & a_{1 n}+x \\
a_{21}+x & a_{22}+x & \cdots & a_{2 n}+x \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1}+x & a_{n 2}+x & \cdots & a_{n n}+x
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
a_{11}+x & a_{12}+x & \cdots & a_{1 n}+x \\
a_{21}-a_{11} & a_{22}-a_{12} & \cdots & a_{2 n}-a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1}-a_{11} & a_{n 2}-a_{12} & \cdots & a_{n n}-a_{1 n}
\end{array}\right) .
\end{aligned}
$$

So $f(x)$ is a polynomial of degree at most 1. Hence $f(x)=\operatorname{det}(A+x J)$ must be a constant.

Solution to Problem 3. We show that the image of g is $(\log 2, \infty)$.
First, we show g is strictly increasing. Let $F:(0, \infty) \rightarrow \mathbb{R}$ be given by $F(x)=\int_{1}^{x} \frac{f(t)}{t} \mathrm{~d} t$. Then by the Fundamental Theorem of Calculus, $F(x)$ is differentiable with $F^{\prime}(x)=\frac{f(x)}{x}$. Since $g(x)=F(2 x)-F(x)$, we have g is differentiable and $g^{\prime}(x)=2 F^{\prime}(2 x)-F^{\prime}(x)=$ $\frac{f(2 x)-f(x)}{x}>0$, as required. Therefore, it suffices to show that $\lim _{x \rightarrow \infty} g(x)=\infty$ and $\lim _{x \rightarrow 0^{+}} g(x)=\log 2$.
We have $g(x)=\int_{x}^{2 x} \frac{f(t)}{t} \mathrm{~d} t>\int_{x}^{2 x} \frac{f(x)}{2 x} \mathrm{~d} t=\frac{f(x)}{2}$. So $\lim _{x \rightarrow \infty} g(x) \geq \frac{1}{2} \lim _{x \rightarrow \infty} f(x)=\infty$. A more careful estimate gives $g(x)=\int_{x}^{2 x} \frac{f(t)}{t} \mathrm{~d} t<f(2 x) \int_{x}^{2 x} \frac{1}{t} \mathrm{~d} t=f(2 x) \log \left(\frac{2 x}{x}\right)=$ $f(2 x) \log 2$ and $g(x)=\int_{x}^{2 x} \frac{f(t)}{t} \mathrm{~d} t>f(x) \int_{x}^{2 x} \frac{1}{t} \mathrm{~d} t=f(x) \log \left(\frac{2 x}{x}\right)=f(x) \log 2$. Since $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} f(2 x)=1$, by Squeeze Theorem we have $\lim _{x \rightarrow 0^{+}} g(x)=\log 2$.

Solution to Problem 4. Take $n>2023$.
By Ramsey's Theorem, there exists some number $R_{1}(n)$ such that every set of $R_{1}(n)$ regions contains a subset of n regions which pairwise intersect (or are pairwise disjoint, but by (iii) we know this not to occur).

By Ramsey's theorem for hypergraphs, there exists some number $R_{2}(n)$ such that every set of $R_{2}(n)$ regions contains a subset of n regions such that the intersection of any three of them is empty (or the intersection of any three of them is non-empty, but by Helly's theorem and (iv) we know this not to occur).
Let $R(n):=\max \left\{R_{1}(n), R_{2}(n)\right\}$ and consider a set of $R(n)$ regions of the family. Then this contains n regions that pairwise intersect yet no three of which intersect. These cover in total an area of size $n P_{1}-\binom{n}{2} P_{2}$, which is negative for large enough n, unless $P_{2}=0$, which must therefore be true.

Suppose that one of the regions contains three non-collinear points. Then $P_{1}>0$, so the same holds for every region. Since $P_{2}=0$, this implies that the pairwise intersections are at the boundaries of the n regions. Consider the graph that has the n regions as its vertices and has an edge between every two tangent regions. Then this graph must be planar, a contradiction, since it is K_{n}.

We conclude that none of the regions contains three non-collinear points, hence each "region" is in fact a line segment. Indeed, a family like this can be made, for example, by considering long enough segments on the set of lines $y=a_{k} x+k$ with $k \geq 0, a_{1}>0$ and $a_{k}:=a_{k-1}+p_{k}$, where p_{k} is the $k^{t h}$ prime number.

