Some Practice Problems on Polynomials

Problem 1 Solution: The only degree sequence (ordered and with zeros ignored) in S is $(3,1)$. The corresponding diagram has one row of length 2 and two rows of length 1 . Thus, as the first approximation we take $\sigma_{1}^{2} \sigma_{2}$. We have

$$
S(\mathbf{x})-\sigma_{1}^{2}(\mathbf{x}) \sigma_{2}(\mathbf{x})=-2 \sum_{i<j} x_{i}^{2} x_{j}^{2}-5 \sum_{j<h ; i \neq j ; i \neq h} x_{i}^{2} x_{j} x_{h}-12 \sigma_{4}(\mathbf{x})
$$

Here, the lex-highest degree sequence is $(2,2)$ and it results in the square 2×2 diagram. Thus we take σ_{2}^{2}. Using

$$
\sum_{i<j} x_{i}^{2} x_{j}^{2}-\sigma_{2}^{2}(\mathbf{x})=-2 \sum_{j<h ; i \neq j ; i \neq h} x_{i}^{2} x_{j} x_{h}-6 \sigma_{4}(\mathbf{x})
$$

we obtain that

$$
S(\mathbf{x})-\sigma_{1}^{2}(\mathbf{x}) \sigma_{2}(\mathbf{x})+2 \sigma_{2}^{2}(\mathbf{x})=-\sum_{j<h ; i \neq j ; i \neq h} x_{i}^{2} x_{j} x_{h}
$$

Here $(2,1,1)$ is the unique degree sequence. The columns of heights $2+1+1$ give rows of widths $3+1$, so we take $\sigma_{1} \sigma_{3}$. We have

$$
\sum_{j<h ; i \neq j ; i \neq h} x_{i}^{2} x_{j} x_{h}-\sigma_{1}(\mathbf{x}) \sigma_{3}(\mathbf{x})=-4 \sigma_{4}(\mathbf{x})
$$

So, the answer is

$$
S=\sigma_{1}^{2} \sigma_{2}+2 \sigma_{2}^{2}-\sigma_{1} \sigma_{3}+4 \sigma_{4}
$$

Problem 2 Solution: We have $\alpha=-\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)=-b, \gamma=-\left(x_{1} x_{2} x_{3}\right)^{2}=-c^{2}$, and

$$
\beta=x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}=\sigma_{3} \sigma_{1}=a c
$$

Thus, $Q(x)=x^{3}-b x^{2}+a c x-c^{2}$.

Problem 3 Solution: For $i \in\{1, \ldots, n\}$, let $\sigma_{i}(\mathbf{x})=\sum_{I \subseteq[n]:|I|=i} \prod_{j \in I} x_{j}$ be the i-th symmetric polynomial; it is equal to $(-1)^{i}$ times the coefficient in front of x^{n-i} in p. We have, for example, $\sigma_{1}(\mathbf{x})=x_{1}+\ldots+x_{n}=2, \sigma_{n-1}(\mathbf{x})=(-1)^{n-1} \cdot 3$ and $\sigma_{n}(\mathbf{x})=x_{1} \ldots x_{n}=(-1)^{n}(-1)=$ $(-1)^{n+1}$.

Observe that, since $\sigma_{n}(\mathbf{x}) \neq 0$, no x_{i} is zero. Thus the sum in question is well-defined.
Thus the sum is equal to

$$
\begin{aligned}
\sum_{i \neq j} \frac{x_{i}}{x_{j}} & =-n+\sum_{i, j} \frac{x_{i}}{x_{j}}=-n+\sum_{j=1}^{n} \frac{x_{1}+\ldots+x_{n}}{x_{j}} \\
& =-n+\sigma_{1}(\mathbf{x}) \sum_{j=1}^{n} \frac{1}{x_{j}}=-n+\sigma_{1}(\mathbf{x}) \frac{\sigma_{n-1}(\mathbf{x})}{\sigma_{n}(\mathbf{x})}=-n+6
\end{aligned}
$$

Problem 4 Solution: The polynomials P and Q do not have multiple roots since ($x-$ 1) $P(x)=x^{m+1}-1$ and $\left(x^{n}-1\right) Q(x)=x^{n(m+1)}-1$ do not. How to show the last claim? One way is to observe that $x_{l}=\mathrm{e}^{2 \pi i l / k}, l=0, \ldots, k-1$, are k distinct roots of $R(x)=x^{k}-1$. Since the degree of R is k, there are no other roots (and no multiple roots). Alternatively, R and its derivative $k x^{k-1}$ have no common root so R has no multiple roots.

Since P has no multiple roots, we have the following chain of equivalent statements

- P divides Q;
- every root of P is a root of Q;
- each root of $x^{m+1}=1$ different from 1 is not a root of $x^{n}=1$;
- the system

$$
\left\{\begin{aligned}
x^{m+1} & =1 \\
x^{n} & =1,
\end{aligned}\right.
$$

has only one solution $x=1$.
If the greatest common divisor $G C D(m+1, n)=d>1$, then $x=\mathrm{e}^{2 \pi i / d} \neq 1$ is a solution. If $G C D(m+1, n)=1$, then we can find integers k and l such that $k(m+1)+l n=1$. Thus every solution x satisfies

$$
x=x^{k(m+1)+l n}=\left(x^{m+1}\right)^{k}\left(x^{n}\right)^{l}=1 .
$$

In summary, the answer is: P divides Q iff $m+1$ and n are relatively prime.

