IMC Selection Test 2

Problem 1. In how many ways can the integers from 1 to n be permuted into a sequence $\left(a_{1}, \ldots, a_{n}\right)$ such that for every $i \in\{2, \ldots, n\}$ there is $j \in\{1, \ldots, i-1\}$ with $\left|a_{i}-a_{j}\right|=1$, that is, every element except the first differs exactly by 1 from some previous element? (For example, for $n=3$, the sequence $(2,1,3)$ is allowed but $(3,1,2)$ is not.)

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let $a_{0} \in \mathbb{R}$ and define the sequence $\left(a_{n}\right)$ by $a_{n+1}=f\left(a_{n}\right)$ for all $n \geq 0$. Suppose that the sequence

$$
\left(\frac{a_{0}+a_{1}+\cdots+a_{n}}{n}\right)_{n \geq 1}
$$

converges. Prove that f has a fixed point (i.e. show that there exists some $c \in \mathbb{R}$ such that $f(c)=c$).

Problem 3. Determine the sequence a_{r} with recursive formula $\frac{(r-1)\left(4 a_{r}-r a_{r-1}\right) a_{r-2}}{a_{r} a_{r-1}}=4$, where $a_{0}=2 a_{1}=1$, and prove that a_{r} is never an integer for $r>0$.

Problem 4. Let n be a positive integer. Evaluate the sum

$$
S=\sum_{r=0}^{\lfloor n / 2\rfloor} \frac{n(n-1) \ldots(n-(2 r-1))}{(r!)^{2}} 2^{n-2 r} .
$$

