IMC Selection Test 3

Problem 1. Let A and B be positive integers such that $(1+\sqrt{7})^{2023}=A+B \sqrt{7}$. Find $\operatorname{gcd}(A, B)$.

Problem 2. An $n \times n$-matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ is skew-symmetric if for all $1 \leq i, j \leq n$ we have $a_{i j}=-a_{j i}$ (in particular, all diagonal entries are 0). Prove that if n is even, then the determinant of an $n \times n$ skew-symmetric matrix A does not change if we add the same number to all of its entries.

Problem 3. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a strictly increasing continuous function with $\lim _{x \rightarrow 0^{+}} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=\infty$. Define $g:(0, \infty) \rightarrow \mathbb{R}$ by $g(x)=\int_{x}^{2 x} \frac{f(t)}{t} \mathrm{~d} t$. Determine the image of g.

Problem 4. For an infinite family of compact, convex regions in the plane, the following are known:

1. every region contains at least two points;
2. every region has area $P_{1} \geq 0$;
3. if two regions intersect, their intersection has area $P_{2} \geq 0$;
4. there do not exist 2,023 pairwise disjoint regions in the family;
5. there does not exist a point of the plane contained in 2,023 distinct regions of the family.

Describe exactly how the regions are shaped.

