IMC 2024 Training
 Expectation is linear

Problem 1 (Warmup).

- A dice is rolled n times, what is the expected number of different sides that come up among these n rolls?
- A coin is tossed n times, with the results recorded in a sequence (e.g. HHTHTTH). What is the expected number of consecutive HHH in the result sequence?

Problem 2* (Putnam 2023). A sequence of real numbers $\left(x_{1}, \cdots, x_{k}\right)$ is a zigzag sequence if the numbers $x_{2}-x_{1}, \cdots, x_{k}-x_{k-1}$ are all non-zero and alternate in signs. Given a permutation $\sigma \in S_{n}$, let $X(\sigma)$ be the maximum possible k such that there exists $1 \leq i_{1}<\cdots<i_{k} \leq n$ with $\left(\sigma\left(i_{1}\right), \cdots, \sigma\left(i_{k}\right)\right)$ being a zigzag sequence. What is the expected value of $X(\sigma)$ if $\sigma \in S_{n}$ is chosen uniformly at random?

Problem 3 (Coupon collector's problem). There are n types of coupons, and every box of cereal contains a uniformly random type of coupon inside. What is the expected number of boxes of cereal one needs to buy to collect all n types coupons?

Problem $4^{*}\left(\right.$ Putnam 2022). Suppose X_{1}, X_{2}, \cdots are real numbers in $[0,1]$ chosen independently and uniformly at random. Let k be the smallest positive integer such that $X_{k}<X_{k+1}$, where we let $k=\infty$ if no such k exists. Find the expected value of $S=\sum_{i=1}^{k} X_{i}$.

Problem 5 (ICMC 2024 Round Two). Let N be a fixed positive integer, let S be the set $\{1,2, \ldots, N\}$, and let F be the set of functions $f: S \rightarrow S$ such that $f(i) \geq i$ for all $i \in S$. For each $f \in F$, let P_{f} be the unique polynomial of degree less than N satisfying $P_{f}(i)=f(i)$ for all $i \in S$. If f is chosen uniformly at random from F, determine the expected value of $\left(P_{f}\right)^{\prime}(0)$.

Problem 6^{*} (Putnam 2016). Let A be a $2 n \times 2 n$ matrix with each of its entries chosen independently and uniformly at random between 0 and 1 . Find the expected value of $\operatorname{det}\left(A-A^{T}\right)$.

Problem 7^{*} (Online Math Open 2013 Fall). Consider the following procedure starting with all 2^{n} subsets of $\{1,2, \cdots, n\}$. In each round, one of the remaining subsets, say S, is picked uniformly at random, and then the set S, along with all remaining sets that are subsets of S are removed. What is the expected number of rounds that this procedure will last?

Problem 8* Show that the randomised quicksort algorithm has expected runtime $O(n \log n)$.
Problem $\mathbf{9}_{*}^{*}($ IMC 2022). Let $n, k \geq 3$ be integers, and let S be a circle. Let n blue points and k red points be chosen uniformly and independently at random on the circle S. Denote by F the intersection of the convex hull of the red points and the convex hull of the blue points. Let m be the number of vertices of the convex polygon F (in particular, $m=0$ when F is empty). Find the expected value of m.

Problem 10* $\mathbf{1 0}_{*}^{*}$ (Putnam 2004). Each square of an $m \times n$ checkerboard is coloured independently at random with red or black with equal probability $\frac{1}{2}$. We say that two squares p and q are in the same connected monochromatic region if there is a sequence of squares, all of the same colour, starting with p and ending with q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is at least $\frac{1}{8} \mathrm{mn}$.

