Solutions for problems on convergence and limits

Problem 1 Solution: For convenience, denote $a_{n}:=(6 n+1) /(n+1)$. First we show by mathematical induction that the sequence $\left(s_{n}\right)$ is non-decreasing. Note that $s_{0}=1<s_{1}=(9 / 2)^{1 / 3}$. Assume that $s_{n-1} \leq s_{n}$. Note that $a_{n}<a_{n+1}$. Thus we have

$$
s_{n}=\left(a_{n}+s_{n-1}\right)^{1 / 3} \leq\left(a_{n+1}+s_{n}\right)^{1 / 3}=s_{n+1} .
$$

Next we show, also by induction, that the sequence $\left(s_{n}\right)$ is bounded above by 2 . Clearly, $s_{0}=1<2$. Assume that $s_{n-1}<2$. Then we have

$$
s_{n}=\left(a_{n}+s_{n-1}\right)^{1 / 3}<(6+2)^{1 / 3}=2 .
$$

Thus $L:=\lim _{n \rightarrow \infty} s_{n}$ exists. Letting $n \rightarrow \infty$ in $s_{n}^{3}=a_{n}+s_{n-1}$, we obtain $L^{3}=6+L$. The roots are 2 and $-1 \pm i \sqrt{2}$. Since each s_{n} is a real number, the limit is 2 .

Problem 2 Solution: No: note $n^{1+1 / n}=n e^{\log n / n}=(1+o(1)) n$.
Alternatively, it is easy to see that $n<2^{n}$ for every $n \geq 1$. Hence $n^{1 / n}<2$, so

$$
\frac{1}{n^{(n+1) / n}}>\frac{1}{2 n} .
$$

Since $\sum 1 /(2 n)$ is divergent, so is our sum.

Problem 3 Solution: No. Suppose the contrary. Then for all large $n \geq n_{0}$ we have $\left|a_{i}-\alpha\right|<\alpha / 4$. This implies that the ratio of a_{n} / a_{n+1} cannot be larger than $(1+1 / 4) /(1-1 / 4)=5 / 3<2$. This means that $a_{n+1}=\sqrt{a_{n}}$ for all $n \geq n_{0}$. Then α satisfies $\alpha=\sqrt{\alpha}$, a contradiction.

Problem 4 Solution: Since \sqrt{x} is monotone increasing function, we have

$$
1+\frac{m^{1 / 2}-1}{1 / 2}=1+\int_{1}^{m} \frac{d x}{\sqrt{x}} \leq 1+\sum_{n=2}^{m} n^{-1 / 2} \leq \sum_{n=1}^{m} n^{-1 / 2} \leq \int_{1}^{m+1} \frac{d x}{\sqrt{x}}=\frac{(m+1)^{1 / 2}-1}{1 / 2} .
$$

It follows that the limit in question is 2 .

Problem 5 Solution: No, it is not. Clearly, the summands are decreasing with n. It is enough to show that the sum

$$
\begin{equation*}
\sum_{n=10^{7}}^{\infty} \frac{1}{n \times \ln n \times \ln (\ln n)} \tag{1}
\end{equation*}
$$

is not converget, since it dominates the original sum. Now observe that the indefinite integral

$$
\int \frac{1}{x \times \ln x \times \ln (\ln x)}=\ln (\ln (\ln (x)))+C,
$$

approaches ∞ as $x \rightarrow \infty$, so the sum (1) does not converge.
Alternatively, this problem can be solve by splitting the summation range into intervals $\left[2^{k}+1,2^{k+1}\right]$ and bounding the sum over the k-th interval by

$$
2^{k} \times \frac{\left(\log _{2} e\right)^{2}}{2^{k+1} k \ln \ln \ln k} \leq \frac{2}{k \ln k}
$$

But we proved in class that the sum $\sum \frac{1}{k \ln k}$ is divergent. Hence, our sum is divergent.

