
Solutions to practice problems

Read these solutions only after you have seriously attempted the problems!

Problem 1 Solution: We have c1 = 2. We can assume that no two circle are the same since otherwise
we can move one of them arbitrarily without decreasing the number of regions. Add circles one by one.
When we add the i-th circle then it has at most 2(i − 1) points of intersection with the earlier circles
and thus cuts at most 2(i− 1) regions. We conclude that ci ≤ ci−1 + 2(i− 1). Thus

cn ≤ 2 +

n∑
i=2

2(i− 1) = 2 + 2

(
n

2

)
= n2 − n+ 2.

This bound is sharp: take any n circles such that every two intersect in two points and no three
have a common point, for example, the rotations around (0, 0) by n distinct small angles of the circle
{(x, y) ∈ R2 : (x− 2)2 + y2 = 1}.

Problem 2 Solution: We have s1 = 2. Let i ≥ 2. To upper bound the number of new regions that
the i-th sphere S can create, we have to upper bound the maximum number of regions on the surface
of S that i − 1 other spheres can create. This can be bounded by the parameter ci from the previous
problem because in proving an upper bound on ci we only use the fact that each two distinct circles
intersect in at most two points (which is still true for circles on a sphere, where we can eliminate any
collection of coinciding circles by perturbing arbitrarily all but one of them). Thus

si ≤ si−1 + ci−1 = si−1 + (i− 1)2 − (i− 1) + 2 = si−1 + i2 − 3i+ 4.

This is sharp: if we take n spheres in general position (every two intersect in a circle, no three having
a common circle, no 4 having a common point) then each of the above inequality becomes equality.

We conclude that

si = 2 +

i∑
j=2

(j2 − 3j + 4).

Suppose that we do not remember the formula for
∑i

j=k

(
j
k

)
but we remember that it is a polynomial

in i of degree k + 1. So the sum 2 +
∑i

j=2(j2 − 3j + 4) is some polynomial Q(i) = f3i
3 + ... + f0 and

we have to determine its coefficients. We do this one by one, starting with the highest-degree one. (We
could have also started from the lowest-degree one.) We have

j2 − 3j + 4 = Q(i)−Q(i− 1) = f3 · 3i2 + terms of degree at most 2.

It follows that f3 = 1/3. Let Q2(i) = Q(i)− i3/3. We have

Q2(i)−Q2(i− 1) = i2 − 3i+ 4− i3/3 + (i− 1)3/3 = −2i+ 11/3.

Thus f2 = −1. Let Q1 = Q2 + i2. Then

Q1(i)−Q2(i) = (−2i+ 11/3) + i2 − (i− 1)2 = 8/3,

so Q1(i) = 8i/3 + f0 and Q = i3/3 − i2 + 8i/3 + f0. Finally, Q(1) = 2, so 1/3 − 1 + 8/3 + f0 = 2 or
f0 = 0. Thus

si = i3/3− i2 + 8i/3.

Problem 3 Solution: Clearly, t1 = 2. One can show that the intersection of the i-th triangle with
the previous i − 1 triangles consists of at most 5(i − 1) + 1 (contiguous) pieces, because each triangle
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contains the origin (0, 0). If we remove 5(i− 1) + 1 (contiguous) pieces from a closed curve then we get
5(i − 1) + 1 pieces and this upper bounds the number of the regions cut by the i-th triangle. Hence
ti ≤ ti−1 + 5(i− 1) + 1. We conclude that

ti ≤ 2 + 5i(i− 1)/2 + (i− 1) = 5i2/2− 3i2/2 + 1.

This inequality it sharp since we can fix a triangle T containing (0, 0) inside its boundary (but not as
one of its 3 vertices) and take small rotations of T by n different angles around (0, 0) for the n triangles.
In this configuration, every two triangles’ boundaries intersect in 6 points, while no point apart of (0, 0)
can belong to the boundaries of more than two of these triangles.

Problem 4 Solution: Each choice of (x3, x4) gives the (unique) pair (x1, x2) via some linear functions
x1 = L1(x3, x4) and x2 = L2(x3, x4). We can assume that neither L1 nor L2 is not identically zero for
otherwise we have no sign sequences at all.

The coordinate axis and the lines L1 = 0 and L2 = 0, all coming through (0, 0), partition the plane
into at most 8 “sign” regions. This is best possible: for example, take two equations x1 + x3 + x4 = 0
and x2 + x3 − x4 = 0 (when the lines L1 = 0 and L2 = 0 go at angles ±π/2).

Note that if we look at an inhomogeneous system

a1x1 + a2x2 + a3x3 + a4x4 = c1,

b1x1 + b2x2 + b3x3 + b4x4 = c2,

then the corresponding lines L1 = 0 and L2 = 0 need not pass through the origin so the number of
possible sign sequences is at most the maximum number of regions defined by any 4 lines, which is 11.
Again, this is best possible. Take two lines L1 = 0 and L2 = 0 that, with the coordinate axes, define 11
regions; then let the two equations be x1 − L1(x3, x4) = 0 and x2 − L2(x3, x4) = 0.
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