IMC SEMINAR

Selection Test 1

Instructions.

- Time: 1 hour.
- Books, notes, and calculators are not allowed.
- Good luck!

Problem 1. Let $a>0$ and let $f(x)$ be a continuos function on $[0, a]$ such that $f(x)>0$ and $f(x) f(a-x)=1$ for every $x \in[0, a]$. Evaluate

$$
\int_{0}^{a} \frac{d x}{1+f(x)}
$$

Problem 2. Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $a b \leq n$.

IMC SEMINAR
 Selection Test 1

Instructions.

- Time: 1 hour.
- Books, notes, and calculators are not allowed.
- Good luck!

Problem 1. Let $a>0$ and let $f(x)$ be a continuos function on $[0, a]$ such that $f(x)>0$ and $f(x) f(a-x)=1$ for every $x \in[0, a]$. Evaluate

$$
\int_{0}^{a} \frac{d x}{1+f(x)}
$$

Problem 2. Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $a b \leq n$.

