IMC SEMINAR

Selection Test 1
 Solutions

Problem 1 Let $a>0$ and let $f(x)$ be a continuos function on $[0, a]$ such that $f(x)>0$ and $f(x) f(a-x)=1$ for every $x \in[0, a]$. Evaluate

$$
\int_{0}^{a} \frac{d x}{1+f(x)}
$$

Solution. Clearly, $0<1 /(1+f(x))<1$ so the integral exists. Setting $x=a-y$ we obtain

$$
\begin{aligned}
I & =\int_{0}^{a} \frac{d x}{1+f(x)}=\int_{a}^{0} \frac{-d y}{1+f(a-y)} \\
& =\int_{0}^{a} \frac{d y}{1+f(a-y)}=\int_{0}^{a} \frac{f(x) d y}{f(y)+1} \\
& =\int_{0}^{a}\left(1-\frac{1}{1+f(y)}\right) d y=a-I
\end{aligned}
$$

Hence, $I=a / 2$.

Problem 2 Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1 . Show that $a b \leq n$.

Solution. Choose a set of a rows r_{1}, \ldots, r_{a} containing an $a \times b$ submatrix whose entries are all 1. Then for $i, j \in\{1, \ldots, a\}$, we have $r_{i} \cdot r_{j}=n$ if $i=j$ and 0 otherwise. Hence

$$
\sum_{i, j=1}^{a} r_{i} \cdot r_{j}=a n
$$

On the other hand, the term on the left is the dot product of $r_{1}+\cdots+r_{a}$ with itself, i.e., its squared length. Since this vector has a in each of its first b coordinates, the dot product is at least $a^{2} b$. Hence $a n \geq a^{2} b$, whence $n \geq a b$ as desired.

