IMC SEMINAR

Selection Test 2

Solutions

Problem 1 Let $x=0.001002004008016032064128 \ldots$ be the real number in the interval $(0,1)$ whose decimal expression is obtained by concatenating the last three digits of the sequence of powers of 2 (padded by 0's in case there is only one or two digits). Is x rational? Explain.

Solution. There are finitely many reminders mod 1000, in particular the sequence of powers of $2 \bmod 1000$ is finite. Moreover, once a repetition is reached the sequence then becomes periodic. This is exactly the same as saying that the decimal expansion of x is periodic. Therefore x is rational.

Problem 2 Compute the eigenvalues of the $n \times n$ matrix

$$
P=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right)
$$

Solution. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the standard basis vectors. Then $P \mathbf{e}_{i}=\mathbf{e}_{i+1}$ with index taken $\bmod n$, so $P^{n}=I$. Since I has eigenvalue 1 with multiplicity n, each eigenvalue of P is a root of $x^{n}=1$. We claim that all n roots are eigenvalues. By the dimension consideration, it enough to exhibit an eigenvector for each root $\omega^{s}, s \in[n]$, where $\omega=\exp (2 \pi i / n)$. We take $\mathbf{u}_{s}=\sum_{k=1}^{n} \omega^{k s} \mathbf{e}_{k}$. We have

$$
P \mathbf{u}_{s}=\sum \omega^{k s} P \mathbf{e}_{k}=\sum \omega^{k s} \mathbf{e}_{k+1}=\omega^{-s} \sum\left(\omega^{s(k+1)} \mathbf{e}_{k+1}\right)=\omega^{-s} u_{s},
$$

as desired.

