Selection Tests

Please note that the IMC selection tests will take place 1-2pm on the following dates:

- 17 Feb in B3.02;
- 24 Feb in B3.02;
- 9 Mar in MS.04.

Homework problems (due at the test on 17 February)

Problem 1 Let X be a finite set and A_{1}, \ldots, A_{50} be its subsets such that each A_{i} has strictly more than half of elements of X. Prove that there is $B \subset X$ of size at most 5 such that B intersects every A_{i}.

Problem 2 Let a set X of size 2^{n} be partitioned into some subsets A_{1}, \ldots, A_{m}. We can repeat the following operation: for some sets A_{i} and A_{j} with $\left|A_{i}\right| \geq\left|A_{j}\right|$, move $\left|A_{j}\right|$ elements from A_{i} to A_{j}. (Thus the size of A_{j} doubles.) Prove that starting from any initial partition we can make one set to be equal to the whole set X.

Problem 3 Suppose that sets $A_{1}, \ldots A_{m}$, each of size r, satisfy that $\left|A_{i} \cap A_{j}\right| \leq k$ for all $1 \leq i<j \leq m$. Prove that

$$
\left|A_{1} \cup \ldots \cup A_{m}\right| \geq \frac{m r^{2}}{k(m-1)+r}
$$

Problem 4 Prove that every graph $G=(V, E)$ (with no loops allowed) admits a vertex partition $V=V_{1} \cup V_{2}$ such that, for both $i=1,2$, all degrees in the induced subgraph $G\left[V_{i}\right]$ are even. (In other words, we require that every vertex $x \in V$ had the even number of neighbours in its part.)

