IMC problem solving seminar Mihail Poplavskyi, M.Poplavskyi@warwick.ac.uk Analysis

1. The definite integrals between 0 and 1 of the squares of the continuous real functions f(x) and g(x) are both equal to 1. Prove that there is a real number c such that $f(c) + g(c) \le 2$. 2. Find all continuously differentiable functions $f: [0,1] \to (0,\infty)$ such that $\frac{f(1)}{f(0)} = e$ and

$$\int_{0}^{1} \frac{\mathrm{d}x}{f^{2}(x)} + \int_{0}^{1} f'^{2}(x) \, \mathrm{d}x \le 2.$$

Number Theory

3. The positive divisors of a positive integer n are written in increasing order starting with 1: $1 = d_1 < d_2 < d_3 < \cdots < n$. Find n if it is known that:

- $n = d_{13} + d_{14} + d_{15}$
- $(d_5+1)^3 = d_{15}+1$

4. Let d(k) denote the number of all natural divisors of a natural number k. Prove that for any natural number n_0 the sequence $\{d(n^2+1)\}_{n=n_0}^{\infty}$ is not strictly monotone.

Homework

5. Let $f : \mathbb{R} \to \mathbb{R}^+$ be a continuous and periodic function. Prove that for all $\alpha \in \mathbb{R}$ the following inequality holds:

$$\int_0^T \frac{f(x)}{f(x+\alpha)} dx \ge T,$$

where T is the period of f(x).

6. Given a nonincreasing differentiable function $f : \mathbb{R}_+ \to \mathbb{R}_+$ prove that

$$\int_{0}^{\infty} e^{-t - f(t)} \sqrt{1 + (f'(t))^2} \, \mathrm{d}t \ge \sqrt{\alpha^2 + (\alpha - e^{-f(0)})^2},$$

where $\alpha = \int_{0}^{\infty} e^{-t - f(t)} dt.$

7. Let $f : \mathbb{N} \to \mathbb{R}$ be given by $f(n) = n^{\frac{\tau(n)}{2}}$ where $\tau(n)$ - is the number of divisors of n. Show that f is injective into \mathbb{N} .

8. * Integer numbers x > 2, y > 1, z are such that $x^y + 1 = z^2$. Let p denote the number of different divisors of x and q - the number of different divisors of y. Prove that $p \ge q + 2$