IMC problem solving seminar

Mihail Poplavskyi, M.Poplavskyi@warwick.ac.uk
 Analysis

1. The definite integrals between 0 and 1 of the squares of the continuous real functions $f(x)$ and $g(x)$ are both equal to 1 . Prove that there is a real number c such that $f(c)+g(c) \leq 2$.
2. Find all continuously differentiable functions $f:[0,1] \rightarrow(0, \infty)$ such that $\frac{f(1)}{f(0)}=e$ and

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{f^{2}(x)}+\int_{0}^{1} f^{\prime 2}(x) \mathrm{d} x \leq 2
$$

Number Theory

3. The positive divisors of a positive integer n are written in increasing order starting with 1 : $1=d_{1}<d_{2}<d_{3}<\cdots<n$. Find n if it is known that:

- $n=d_{13}+d_{14}+d_{15}$
- $\left(d_{5}+1\right)^{3}=d_{15}+1$

4. Let $d(k)$ denote the number of all natural divisors of a natural number k. Prove that for any natural number n_{0} the sequence $\left\{d\left(n^{2}+1\right)\right\}_{n=n_{0}}^{\infty}$ is not strictly monotone.

Homework

5. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be a continuous and periodic function. Prove that for all $\alpha \in \mathbb{R}$ the following inequality holds:

$$
\int_{0}^{T} \frac{f(x)}{f(x+\alpha)} d x \geq T
$$

where T is the period of $f(x)$.
6. Given a nonincreasing differentiable function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$prove that

$$
\int_{0}^{\infty} e^{-t-f(t)} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t \geq \sqrt{\alpha^{2}+\left(\alpha-e^{-f(0)}\right)^{2}}
$$

where $\alpha=\int_{0}^{\infty} e^{-t-f(t)} \mathrm{d} t$.
7. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be given by $f(n)=n^{\frac{\tau(n)}{2}}$ where $\tau(n)$ - is the number of divisors of n. Show that f is injective into \mathbb{N}.
8. * Integer numbers $x>2, y>1, z$ are such that $x^{y}+1=z^{2}$. Let p denote the number of different divisors of x and q - the number of different divisors of y . Prove that $p \geq q+2$

