Problem 1. What is the maximum value of

$$
\sum_{i=1}^{n}|\sigma(2 i)-\sigma(2 i-1)|
$$

over all permutations σ of $\{1, \ldots, 2 n\}$?
Problem 2. Let $a>0$ and let $f(x)$ be a continuous function on $[0, a]$ such that $f(x)>0$ and $f(x) f(a-x)=1$ for every $x \in[0, a]$. Evaluate

$$
\int_{0}^{a} \frac{d x}{1+f(x)}
$$

Problem 3. For every positive integer n, let a_{n} be the number of terms in the sequence $2^{1}, 2^{2}, \cdots, 2^{n}$ whose base-10 representation begins with the digit 1 . Find $\lim _{n \rightarrow \infty} a_{n} / n$.

Problem 4. Recall a complex number α is an n-th primitive root of unity if n is the smallest positive integer such that $\alpha^{n}=1$. The cyclotomic polynomial $\phi_{n}(z)$ is the product of $z-\alpha$ over all primitive n-th roots of unity α.

1. Prove that $z^{n}-1=\prod_{d \mid n} \phi_{d}(z)$, where the product is over all $d \in\{1, \ldots, n\}$ that divide n.
2. For each integer $n \geq 1$, determine the value of $\phi_{n}(1)$.

Problem 5. Let n, m be positive integers and let A_{1}, \ldots, A_{m} be subsets of $\{1,2, \ldots, n\}$. For each non-empty $S \subseteq\{1,2, \ldots, m\}$, let $A_{S}:=\cup_{k \in S} A_{k}$. Define a function f on $[0,1]$ by

$$
f(x):=\sum_{\emptyset \neq S \subseteq\{1,2, \ldots, m\}}(-1)^{|S|-1} x^{\left|A_{S}\right|}, \quad x \in[0,1] .
$$

Show that f is non-decreasing.

