
Solution to Problem 1. The maximum is n2. One of many examples attaining it is
when σ has respectively values 1, . . . , n on 1, 3, 5, . . . , 2n− 1 and n+ 1, n+ 2, . . . , 2n on
2, 4, 6, . . . , 2n: then we add n terms, each equal to n.

On the other hand, given σ let us define

ai := max(σ(2i), σ(2i− 1)),

bi := min(σ(2i), σ(2i− 1)), for 1 ≤ i ≤ n.

Then a1, . . . , an, b1, . . . , bn is a permutation of 1, . . . , 2n and thus

n∑
i=1

|σ(2i)− σ(2i− 1)| =
n∑

i=1

(ai − bi) =
n∑

i=1

ai −
n∑

i=1

bi

≤ ((n+ 1) + . . .+ 2n)− (1 + . . .+ n) = n2,

as desired.

Solution to Problem 2. Clearly, 0 < 1/(1 + f(x)) < 1 and the integrated function is
continuous. Thus the integral exists. Setting x = a− y we obtain

I =

∫ a

0

dx

1 + f(x)
=

∫ 0

a

−dy

1 + f(a− y)

=

∫ a

0

dy

1 + f(a− y)
=

∫ a

0

f(y)dy

f(y) + 1

=

∫ a

0

(
1− 1

1 + f(y)

)
dy = a− I.

Hence, I = a/2.

Solution to Problem 3. We show that limn→∞ an/n = log10 2. It suffices to show
an = ⌊n log10 2⌋ for all positive integer n, as then

log10 2−
1

n
≤ an

n
≤ log10 2.

Fix a positive integer n and let m := ⌊n log10 2⌋. The main idea of the proof is in brief
that every integer between 21 and 2n that starts with 1 belongs to exactly one of the m
intervals [10k, 2 · 10k), 1 ≤ k ≤ m, while each interval contains precisely one power of 2.
More formally, for each i ∈ [n], 2i starts with the digit 1 if and only if 10k ≤ 2i < 2 · 10k
for some positive integer k. Since 10m+1 > 10n log10 2 = 2n, we must have k ≤ m. On
the other hand, we claim that for every k ∈ [m], there exists a unique i ∈ [n] satisfying
10k ≤ 2i < 2 · 10k. Indeed, fix a k ∈ [m] and let i ∈ [n] be minimal subject to 10k ≤ 2i.
Such i exists as 10k ≤ 10m ≤ 10n log10 2 = 2n. Also, i ≥ 4 as 10k ≥ 10 > 23. We claim that
this is the unique i that works. By minimality of i, 2j < 10k for all j < i. In particular,
2i−1 < 10k, and thus 10k ≤ 2i < 2 · 10k. Meanwhile, for all j > i, 2j ≥ 2 · 2i ≥ 2 · 10k.
Alternatively, observe that 2i starts with digit 1 if and only if 10⌊log10 2

i⌋ ≤ 2i < 2 ·
10⌊log10 2

i⌋. This is equivalent to {i log10 2} ∈ [0, log10 2), where {i log10 2} denotes the
fractional part of i log10 2. Since log10 2 is irrational, by the Equidistribution Theorem, as
n tends to infinity, the proportion of i ∈ [n] satisfying {i log10 2} ∈ [0, log10 2) is log10 2.
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Solution to Problem 4. 1. The polynomial zn−1 factorises as the product of z−α
over all n-th roots of unity α. For every such α, its order m (the smallest integer
m ≥ 1 such that αm = 1) is a divisor of n and the product of z−α over all order-m
roots α is exactly ϕn/m(z).

2. Let us prove by induction on n that

ϕn(1) =


0, n = 1,
p, n = pk, k ∈ N, p is prime,
1, otherwise.

This is true if n = 1 as ϕ1(z) = z−1. If n = p is prime, then ϕp(z) is the product of
z−α over all p-th roots of unity different from 1. Thus ϕp(z) =

zp−1
z−1

= zp−1+ · · ·+1
and ϕp(1) = p. Suppose that n ≥ 2 is not a prime. Let the prime factorisation of
n is

∏s
i=1 p

mi
i for some distinct primes pi with each mi ≥ 1. By the identity in the

first part divided by ϕ1(z) = z − 1, we know that

zn−1 + · · ·+ 1 = ϕn(z)
∏
d|n

1<d<n

ϕd(z),

If we substitute z = 1 then we get that

n = ϕn(1)
∏

0≤k1≤m1, ··· , 0≤ks≤ms,
(k1,...,ks )̸=(0,...,0) or (m1,...,ms)

ϕ
p
k1
1 ...pkss

(1).

The last term is different from 1 only if all k’s are zero except exactly one ki is
between 1 and mi, when the value is pi by induction. If s ≥ 2 then there are
exactly mi choices of ki for each i and thus n = ϕn(1) =

∏n
i=1 p

mi
i and ϕn(1) = 1.

If s = 1, then there are exactly m1 − 1 choices for k1 (as we now have to avoid
k1 = m1), so pm1

1 = ϕn(1) = pm1−1
1 and ϕn(1) = p1, as desired.

Solution to Problem 5. For each A ⊆ [n] and x ∈ [0, 1], let RA(x) ⊆ [0, 1)n be given
by

RA(x) := {(t1, . . . , tn) ∈ [0, 1)n | ti < x for all i ∈ A}.

Then vol(RA(x)) = x|A|. Note that for all ∅ ̸= S ⊆ [m], RAS
(x) = ∩k∈SRAk

(x). Hence,
we have, by the Inclusion-Exclusion Principle,

f(x) =
∑

∅≠S⊆{1,2,...,m}

(−1)|S|−1vol(RAs(x))

=
∑

∅≠S⊆{1,2,...,m}

(−1)|S|−1vol(∩k∈SRAk
(x))

= vol(∪m
k=1RAk

(x)).

Hence, it suffices to show that for all 0 ≤ x ≤ y ≤ 1, we have ∪m
k=1RAk

(x) ⊆ ∪m
k=1RAk

(y).
Indeed, if (t1, . . . , tn) ∈ ∪m

k=1RAk
(x), then there exists ℓ ∈ [m] such that ti < x for all
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i ∈ Aℓ. It follows that ti < y for all i ∈ Aℓ, and thus (t1, . . . , tn) ∈ RAℓ
(y) ⊆ ∪m

k=1RAk
(y),

as required.

Alternatively, let B1, · · · , Bn be independent random events each occuring with prob-
ability x. For every k ∈ [m], let Ek be the event that Bi occurs for all i ∈ Ak. For
every ∅ ̸= S ⊂ [m], let ES be the event that Ek occurs for all k ∈ S, or equivalently
Bi occurs for all i ∈ ∪k∈SAk = AS. Then P(ES) = x|AS |, and by a similar applica-
tion of the Inclusion-Exclusion Principle, we have f(x) = P(∪m

k=1Ek), which is evidently
non-decreasing.
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