Solution to Problem 1. The maximum is n2. One of many examples attaining it is
when o has respectively values 1,...,non 1,3,5,...,2n—1land n+1,n+2,...,2n on
2,4,6,...,2n: then we add n terms, each equal to n.

On the other hand, given o let us define

a; = max(o(2i),0(2i — 1)),
b; := min(o(2i),0(2i —1)), forl<i<n.
Then ay,...,an,b1,...,b, is a permutation of 1,...,2n and thus
Yo —o@i-1)] = ) (ai—b) = > ai—> b
i=1 i=1 i=1 i=1

< (n+1D)+...4+2n)—1+...+n) = n?
as desired.

Solution to Problem 2. Clearly, 0 < 1/(1 + f(z)) < 1 and the integrated function is
continuous. Thus the integral exists. Setting z = a — y we obtain

:/01+fa— fz(j;

- /oa(l m)dy -t

Solution to Problem 3. We show that lim, ,. a,/n = log,,2. It suffices to show
a, = |nlog,,2] for all positive integer n, as then

Hence, I = a/2.
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Fix a positive integer n and let m := [nlog;y2|. The main idea of the proof is in brief
that every integer between 2! and 2" that starts with 1 belongs to exactly one of the m
intervals [10%,2 - 10¥), 1 < k < m, while each interval contains precisely one power of 2.
More formally, for each i € [n], 2¢ starts with the digit 1 if and only if 10¥ < 2! < 2. 10k
for some positive integer k. Since 10™*! > 1078102 = 2" we must have k < m. On
the other hand, we claim that for every k € [m], there exists a unique i € [n] satisfying
10% < 28 < 2. 10F. Indeed, fix a k € [m] and let i € [n] be minimal subject to 10F < 2°.
Such i exists as 10¥ < 10™ < 107198102 = 27 Also, ¢ > 4 as 10* > 10 > 23. We claim that
this is the unique 4 that works. By minimality of i, 2/ < 10* for all j < ¢. In particular,
2i=1 < 10%, and thus 10F < 2 < 2. 10%. Meanwhile, for all j > i, 29 > 2.2 > 2. 10*.

Alternatively, observe that 2’ starts with digit 1 if and only if 10log0?] < 20 < 2.
10l°8102') " This is equivalent to {ilog;y2} € [0,log,,2), where {ilog,,2} denotes the
fractional part of 7log,, 2. Since log,, 2 is irrational, by the Equidistribution Theorem, as
n tends to infinity, the proportion of i € [n] satisfying {ilog,,2} € [0,log,, 2) is logy, 2.
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Solution to Problem 4. 1. The polynomial 2" — 1 factorises as the product of z — «
over all n-th roots of unity a. For every such «, its order m (the smallest integer
m > 1 such that o™ = 1) is a divisor of n and the product of z — a over all order-m
roots av is exactly ¢, /m(2).

2. Let us prove by induction on n that

0, n=1,
6n(1) =< p, n=7p" keN, pis prime,
1, otherwise.

This is true if n = 1 as ¢1(2) = z—1. If n = p is prime, then ¢,(z) is the product of
z—a over all p-th roots of unity different from 1. Thus ¢,(z) = Z;%f =214t
and ¢,(1) = p. Suppose that n > 2 is not a prime. Let the prime factorisation of
nis [[;_, pi"* for some distinct primes p; with each m; > 1. By the identity in the
first part divided by ¢1(z) = z — 1, we know that

b 1 =0u(2) [ ¢al2).

dln
1<d<n

If we substitute z = 1 then we get that

n=¢n(1) I1 6, (1).

0<ki<mq, -+, 0<ks<msg,
(k1se-s ks)#(0,..., 0) or (mq,..., ms)

The last term is different from 1 only if all k’s are zero except exactly one k; is
between 1 and m;, when the value is p; by induction. If s > 2 then there are
exactly m; choices of k; for each ¢ and thus n = ¢,,(1) = [[}_, pi"* and ¢, (1) = L.
If s = 1, then there are exactly m; — 1 choices for k; (as we now have to avoid
k1 =my), so pi" = ¢,(1) = p™ " and ¢, (1) = p1, as desired.

Solution to Problem 5. For each A C [n] and z € [0,1], let Ra(x) C [0,1)" be given
by

Ra(x) :={(t1,...,tn) €[0,1)" | t; <z for all i € A}.
Then vol(R4(x)) = z4l. Note that for all §} # S C [m], Ra.(z) = NresRa, (x). Hence,
we have, by the Inclusion-Exclusion Principle,

flx) = Y. (=DFvol(Ra, ()

0#£SC{1,2,....,m}
0ASCLL2,...;m}
= VO](Uzﬁ;lRA,c (l'))

Hence, it suffices to show that for all 0 < 2 <y < 1, we have U}’ | R4, (z) C UL Ra, ().
Indeed, if (¢y,...,t,) € Upt Ra,(z), then there exists ¢ € [m] such that ¢, < z for all



i € Ay. It follows that t; < y for all i € Ay, and thus (¢4, ...,t,) € Ra,(y) C U Ra, (),
as required.

Alternatively, let By,--- , B, be independent random events each occuring with prob-
ability x. For every k € [m]|, let Ej be the event that B; occurs for all i € A;. For
every () # S C [m], let Eg be the event that Ej, occurs for all k € S, or equivalently
B; occurs for all i € UpegAr = Ag. Then P(Eg) = /45l and by a similar applica-
tion of the Inclusion-Exclusion Principle, we have f(z) = P(U;*, E)), which is evidently
non-decreasing.



