Solution to Problem 1. The maximum is n^2 . One of many examples attaining it is when σ has respectively values $1, \ldots, n$ on $1, 3, 5, \ldots, 2n - 1$ and $n + 1, n + 2, \ldots, 2n$ on $2, 4, 6, \ldots, 2n$: then we add n terms, each equal to n.

On the other hand, given σ let us define

$$a_i := \max(\sigma(2i), \sigma(2i-1)),$$

$$b_i := \min(\sigma(2i), \sigma(2i-1)), \text{ for } 1 \le i \le n$$

Then $a_1, \ldots, a_n, b_1, \ldots, b_n$ is a permutation of $1, \ldots, 2n$ and thus

$$\sum_{i=1}^{n} |\sigma(2i) - \sigma(2i-1)| = \sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$$

$$\leq ((n+1) + \dots + 2n) - (1 + \dots + n) = n^2,$$

as desired.

Solution to Problem 2. Clearly, 0 < 1/(1 + f(x)) < 1 and the integrated function is continuous. Thus the integral exists. Setting x = a - y we obtain

$$I = \int_{0}^{a} \frac{dx}{1+f(x)} = \int_{a}^{0} \frac{-dy}{1+f(a-y)}$$
$$= \int_{0}^{a} \frac{dy}{1+f(a-y)} = \int_{0}^{a} \frac{f(y)dy}{f(y)+1}$$
$$= \int_{0}^{a} \left(1 - \frac{1}{1+f(y)}\right) dy = a - I.$$

Hence, I = a/2.

Solution to Problem 3. We show that $\lim_{n\to\infty} a_n/n = \log_{10} 2$. It suffices to show $a_n = \lfloor n \log_{10} 2 \rfloor$ for all positive integer n, as then

$$\log_{10} 2 - \frac{1}{n} \le \frac{a_n}{n} \le \log_{10} 2.$$

Fix a positive integer n and let $m := \lfloor n \log_{10} 2 \rfloor$. The main idea of the proof is in brief that every integer between 2^1 and 2^n that starts with 1 belongs to exactly one of the mintervals $[10^k, 2 \cdot 10^k)$, $1 \le k \le m$, while each interval contains precisely one power of 2. More formally, for each $i \in [n]$, 2^i starts with the digit 1 if and only if $10^k \le 2^i < 2 \cdot 10^k$ for some positive integer k. Since $10^{m+1} > 10^{n \log_{10} 2} = 2^n$, we must have $k \le m$. On the other hand, we claim that for every $k \in [m]$, there exists a unique $i \in [n]$ satisfying $10^k \le 2^i < 2 \cdot 10^k$. Indeed, fix a $k \in [m]$ and let $i \in [n]$ be minimal subject to $10^k \le 2^i$. Such i exists as $10^k \le 10^m \le 10^{n \log_{10} 2} = 2^n$. Also, $i \ge 4$ as $10^k \ge 10 > 2^3$. We claim that this is the unique i that works. By minimality of i, $2^j < 10^k$ for all j < i. In particular, $2^{i-1} < 10^k$, and thus $10^k \le 2^i < 2 \cdot 10^k$. Meanwhile, for all j > i, $2^j \ge 2 \cdot 2^i \ge 2 \cdot 10^k$.

Alternatively, observe that 2^i starts with digit 1 if and only if $10^{\lfloor \log_{10} 2^i \rfloor} \leq 2^i < 2 \cdot 10^{\lfloor \log_{10} 2^i \rfloor}$. This is equivalent to $\{i \log_{10} 2\} \in [0, \log_{10} 2)$, where $\{i \log_{10} 2\}$ denotes the fractional part of $i \log_{10} 2$. Since $\log_{10} 2$ is irrational, by the Equidistribution Theorem, as n tends to infinity, the proportion of $i \in [n]$ satisfying $\{i \log_{10} 2\} \in [0, \log_{10} 2)$ is $\log_{10} 2$.

- Solution to Problem 4. 1. The polynomial $z^n 1$ factorises as the product of $z \alpha$ over all *n*-th roots of unity α . For every such α , its order *m* (the smallest integer $m \ge 1$ such that $\alpha^m = 1$) is a divisor of *n* and the product of $z \alpha$ over all order-*m* roots α is exactly $\phi_{n/m}(z)$.
 - 2. Let us prove by induction on n that

$$\phi_n(1) = \begin{cases} 0, & n = 1, \\ p, & n = p^k, \ k \in \mathbb{N}, \ p \text{ is prime}, \\ 1, & \text{otherwise.} \end{cases}$$

This is true if n = 1 as $\phi_1(z) = z - 1$. If n = p is prime, then $\phi_p(z)$ is the product of $z - \alpha$ over all *p*-th roots of unity different from 1. Thus $\phi_p(z) = \frac{z^p - 1}{z - 1} = z^{p-1} + \cdots + 1$ and $\phi_p(1) = p$. Suppose that $n \ge 2$ is not a prime. Let the prime factorisation of n is $\prod_{i=1}^{s} p_i^{m_i}$ for some distinct primes p_i with each $m_i \ge 1$. By the identity in the first part divided by $\phi_1(z) = z - 1$, we know that

$$z^{n-1} + \dots + 1 = \phi_n(z) \prod_{\substack{d \mid n \\ 1 < d < n}} \phi_d(z),$$

If we substitute z = 1 then we get that

$$n = \phi_n(1) \prod_{\substack{0 \le k_1 \le m_1, \dots, 0 \\ (k_1, \dots, k_s) \ne (0, \dots, 0) \text{ or } (m_1, \dots, m_s)}} \phi_{p_1^{k_1} \dots p_s^{k_s}}(1).$$

The last term is different from 1 only if all k's are zero except exactly one k_i is between 1 and m_i , when the value is p_i by induction. If $s \ge 2$ then there are exactly m_i choices of k_i for each i and thus $n = \phi_n(1) = \prod_{i=1}^n p_i^{m_i}$ and $\phi_n(1) = 1$. If s = 1, then there are exactly $m_1 - 1$ choices for k_1 (as we now have to avoid $k_1 = m_1$), so $p_1^{m_1} = \phi_n(1) = p_1^{m_1-1}$ and $\phi_n(1) = p_1$, as desired.

Solution to Problem 5. For each $A \subseteq [n]$ and $x \in [0, 1]$, let $R_A(x) \subseteq [0, 1)^n$ be given by

$$R_A(x) := \{ (t_1, \dots, t_n) \in [0, 1)^n \mid t_i < x \text{ for all } i \in A \}.$$

Then $\operatorname{vol}(R_A(x)) = x^{|A|}$. Note that for all $\emptyset \neq S \subseteq [m]$, $R_{A_S}(x) = \bigcap_{k \in S} R_{A_k}(x)$. Hence, we have, by the Inclusion-Exclusion Principle,

$$f(x) = \sum_{\substack{\emptyset \neq S \subseteq \{1,2,\dots,m\} \\ 0 \neq S \subseteq \{1,2,\dots,m\}}} (-1)^{|S|-1} \operatorname{vol}(R_{A_s}(x))$$
$$= \sum_{\substack{\emptyset \neq S \subseteq \{1,2,\dots,m\} \\ 0 \neq S \subseteq \{1,2,\dots,m\}}} (-1)^{|S|-1} \operatorname{vol}(\cap_{k \in S} R_{A_k}(x))$$

Hence, it suffices to show that for all $0 \le x \le y \le 1$, we have $\bigcup_{k=1}^{m} R_{A_k}(x) \subseteq \bigcup_{k=1}^{m} R_{A_k}(y)$. Indeed, if $(t_1, \ldots, t_n) \in \bigcup_{k=1}^{m} R_{A_k}(x)$, then there exists $\ell \in [m]$ such that $t_i < x$ for all $i \in A_{\ell}$. It follows that $t_i < y$ for all $i \in A_{\ell}$, and thus $(t_1, \ldots, t_n) \in R_{A_{\ell}}(y) \subseteq \bigcup_{k=1}^m R_{A_k}(y)$, as required.

Alternatively, let B_1, \dots, B_n be independent random events each occuring with probability x. For every $k \in [m]$, let E_k be the event that B_i occurs for all $i \in A_k$. For every $\emptyset \neq S \subset [m]$, let E_S be the event that E_k occurs for all $k \in S$, or equivalently B_i occurs for all $i \in \bigcup_{k \in S} A_k = A_S$. Then $\mathbb{P}(E_S) = x^{|A_S|}$, and by a similar application of the Inclusion-Exclusion Principle, we have $f(x) = \mathbb{P}(\bigcup_{k=1}^m E_k)$, which is evidently non-decreasing.