Solution to Problem 1. The maximum is n^{2}. One of many examples attaining it is when σ has respectively values $1, \ldots, n$ on $1,3,5, \ldots, 2 n-1$ and $n+1, n+2, \ldots, 2 n$ on $2,4,6, \ldots, 2 n$: then we add n terms, each equal to n.
On the other hand, given σ let us define

$$
\begin{aligned}
a_{i} & :=\max (\sigma(2 i), \sigma(2 i-1)), \\
b_{i} & :=\min (\sigma(2 i), \sigma(2 i-1)), \quad \text { for } 1 \leq i \leq n
\end{aligned}
$$

Then $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ is a permutation of $1, \ldots, 2 n$ and thus

$$
\begin{aligned}
\sum_{i=1}^{n}|\sigma(2 i)-\sigma(2 i-1)| & =\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i} \\
& \leq((n+1)+\ldots+2 n)-(1+\ldots+n)=n^{2}
\end{aligned}
$$

as desired.
Solution to Problem 2. Clearly, $0<1 /(1+f(x))<1$ and the integrated function is continuous. Thus the integral exists. Setting $x=a-y$ we obtain

$$
\begin{aligned}
I & =\int_{0}^{a} \frac{d x}{1+f(x)}=\int_{a}^{0} \frac{-d y}{1+f(a-y)} \\
& =\int_{0}^{a} \frac{d y}{1+f(a-y)}=\int_{0}^{a} \frac{f(y) d y}{f(y)+1} \\
& =\int_{0}^{a}\left(1-\frac{1}{1+f(y)}\right) d y=a-I .
\end{aligned}
$$

Hence, $I=a / 2$.
Solution to Problem 3. We show that $\lim _{n \rightarrow \infty} a_{n} / n=\log _{10} 2$. It suffices to show $a_{n}=\left\lfloor n \log _{10} 2\right\rfloor$ for all positive integer n, as then

$$
\log _{10} 2-\frac{1}{n} \leq \frac{a_{n}}{n} \leq \log _{10} 2 .
$$

Fix a positive integer n and let $m:=\left\lfloor n \log _{10} 2\right\rfloor$. The main idea of the proof is in brief that every integer between 2^{1} and 2^{n} that starts with 1 belongs to exactly one of the m intervals $\left[10^{k}, 2 \cdot 10^{k}\right), 1 \leq k \leq m$, while each interval contains precisely one power of 2 . More formally, for each $i \in[n], 2^{i}$ starts with the digit 1 if and only if $10^{k} \leq 2^{i}<2 \cdot 10^{k}$ for some positive integer k. Since $10^{m+1}>10^{n \log _{10} 2}=2^{n}$, we must have $k \leq m$. On the other hand, we claim that for every $k \in[m]$, there exists a unique $i \in[n]$ satisfying $10^{k} \leq 2^{i}<2 \cdot 10^{k}$. Indeed, fix a $k \in[m]$ and let $i \in[n]$ be minimal subject to $10^{k} \leq 2^{i}$. Such i exists as $10^{k} \leq 10^{m} \leq 10^{n \log _{10} 2}=2^{n}$. Also, $i \geq 4$ as $10^{k} \geq 10>2^{3}$. We claim that this is the unique i that works. By minimality of $i, 2^{j}<10^{k}$ for all $j<i$. In particular, $2^{i-1}<10^{k}$, and thus $10^{k} \leq 2^{i}<2 \cdot 10^{k}$. Meanwhile, for all $j>i, 2^{j} \geq 2 \cdot 2^{i} \geq 2 \cdot 10^{k}$.
Alternatively, observe that 2^{i} starts with digit 1 if and only if $10^{\left\lfloor\log _{10} 2^{i}\right\rfloor} \leq 2^{i}<2$. $10^{\left.\log _{10} 2^{i}\right\rfloor}$. This is equivalent to $\left\{i \log _{10} 2\right\} \in\left[0, \log _{10} 2\right)$, where $\left\{i \log _{10} 2\right\}$ denotes the fractional part of $i \log _{10} 2$. Since $\log _{10} 2$ is irrational, by the Equidistribution Theorem, as n tends to infinity, the proportion of $i \in[n]$ satisfying $\left\{i \log _{10} 2\right\} \in\left[0, \log _{10} 2\right)$ is $\log _{10} 2$.

Solution to Problem 4. 1. The polynomial $z^{n}-1$ factorises as the product of $z-\alpha$ over all n-th roots of unity α. For every such α, its order m (the smallest integer $m \geq 1$ such that $\alpha^{m}=1$) is a divisor of n and the product of $z-\alpha$ over all order- m roots α is exactly $\phi_{n / m}(z)$.
2. Let us prove by induction on n that

$$
\phi_{n}(1)= \begin{cases}0, & n=1, \\ p, & n=p^{k}, \quad k \in \mathbb{N}, p \text { is prime } \\ 1, & \text { otherwise }\end{cases}
$$

This is true if $n=1$ as $\phi_{1}(z)=z-1$. If $n=p$ is prime, then $\phi_{p}(z)$ is the product of $z-\alpha$ over all p-th roots of unity different from 1. Thus $\phi_{p}(z)=\frac{z^{p}-1}{z-1}=z^{p-1}+\cdots+1$ and $\phi_{p}(1)=p$. Suppose that $n \geq 2$ is not a prime. Let the prime factorisation of n is $\prod_{i=1}^{s} p_{i}^{m_{i}}$ for some distinct primes p_{i} with each $m_{i} \geq 1$. By the identity in the first part divided by $\phi_{1}(z)=z-1$, we know that

$$
z^{n-1}+\cdots+1=\phi_{n}(z) \prod_{\substack{d \mid n \\ 1<d<n}} \phi_{d}(z)
$$

If we substitute $z=1$ then we get that

$$
n=\phi_{n}(1) \prod_{\substack{\left.0 \leq k_{1} \leq m_{1}, \ldots,\right\} \\\left(k_{1}, \ldots, k_{s}\right) \neq(0, \ldots,)^{0 \leq k_{s} \leq m_{s}}, \text { or }\left(m_{1}, \ldots, m_{s}\right)}} \phi_{p_{1}^{k_{1}} \ldots p_{s}^{k_{s}}}(1)
$$

The last term is different from 1 only if all k 's are zero except exactly one k_{i} is between 1 and m_{i}, when the value is p_{i} by induction. If $s \geq 2$ then there are exactly m_{i} choices of k_{i} for each i and thus $n=\phi_{n}(1)=\prod_{i=1}^{n} p_{i}^{m_{i}}$ and $\phi_{n}(1)=1$. If $s=1$, then there are exactly $m_{1}-1$ choices for k_{1} (as we now have to avoid $\left.k_{1}=m_{1}\right)$, so $p_{1}^{m_{1}}=\phi_{n}(1)=p_{1}^{m_{1}-1}$ and $\phi_{n}(1)=p_{1}$, as desired.

Solution to Problem 5. For each $A \subseteq[n]$ and $x \in[0,1]$, let $R_{A}(x) \subseteq[0,1)^{n}$ be given by

$$
R_{A}(x):=\left\{\left(t_{1}, \ldots, t_{n}\right) \in[0,1)^{n} \mid t_{i}<x \text { for all } i \in A\right\} .
$$

Then $\operatorname{vol}\left(R_{A}(x)\right)=x^{|A|}$. Note that for all $\emptyset \neq S \subseteq[m], R_{A_{S}}(x)=\cap_{k \in S} R_{A_{k}}(x)$. Hence, we have, by the Inclusion-Exclusion Principle,

$$
\begin{aligned}
f(x) & =\sum_{\emptyset \neq S \subseteq\{1,2, \ldots, m\}}(-1)^{|S|-1} \operatorname{vol}\left(R_{A_{s}}(x)\right) \\
& =\sum_{\emptyset \neq S \subseteq\{1,2, \ldots, m\}}(-1)^{|S|-1} \operatorname{vol}\left(\cap_{k \in S} R_{A_{k}}(x)\right) \\
& =\operatorname{vol}\left(\cup_{k=1}^{m} R_{A_{k}}(x)\right)
\end{aligned}
$$

Hence, it suffices to show that for all $0 \leq x \leq y \leq 1$, we have $\cup_{k=1}^{m} R_{A_{k}}(x) \subseteq \cup_{k=1}^{m} R_{A_{k}}(y)$. Indeed, if $\left(t_{1}, \ldots, t_{n}\right) \in \cup_{k=1}^{m} R_{A_{k}}(x)$, then there exists $\ell \in[m]$ such that $t_{i}<x$ for all
$i \in A_{\ell}$. It follows that $t_{i}<y$ for all $i \in A_{\ell}$, and thus $\left(t_{1}, \ldots, t_{n}\right) \in R_{A_{\ell}}(y) \subseteq \cup_{k=1}^{m} R_{A_{k}}(y)$, as required.

Alternatively, let B_{1}, \cdots, B_{n} be independent random events each occuring with probability x. For every $k \in[m]$, let E_{k} be the event that B_{i} occurs for all $i \in A_{k}$. For every $\emptyset \neq S \subset[m]$, let E_{S} be the event that E_{k} occurs for all $k \in S$, or equivalently B_{i} occurs for all $i \in \cup_{k \in S} A_{k}=A_{S}$. Then $\mathbb{P}\left(E_{S}\right)=x^{\left|A_{S}\right|}$, and by a similar application of the Inclusion-Exclusion Principle, we have $f(x)=\mathbb{P}\left(\cup_{k=1}^{m} E_{k}\right)$, which is evidently non-decreasing.

