Solution to Problem 1. Using f(0) = 1, we get 1 + f(1) = 2024, so f(1) = 2023.
Since f is continuous, there exists y € (0,1) such that f(y) = 1000. It follows that
1000 + £(1000) = 2024, so £(1000) = 1024.

An example of such f is

1, if x € (—o0,0] U [2023, 00),
flx) =4¢2022z + 1, if x € (0,1),
2024 — , if z € (1,2023).

Solution to Problem 2. Answer: P(z) can be any polynomial.

(Short Solution) Let V' be the subspace of the vector space of polynomials with basis
2,1 = 0,...,n. Let W C Rx] be the ideal generated by P(z). Then there is a
natural projection 7 : R(x) — R(z)/W which is a linear map. Viewing 7 as map from
V — R(x)/W, we see that the kernel ker(7) must be non trivial since dim(V') = n + 1,
but dim(R(x)/W) = n. If R # 0 is in the kernel, then R = PQ for some Q # 0 (by
7(R) = 0) and non-zero coefficients in R are restricted to 2% for 0 <i <n (by R € V).

(Long Solution) Consider the quotients of 22 by P(z), i = 0,1,...n. We can write these
down as

2 P(ZE)81($) + Rl(x)

4 P(.T})SQ(LU) + RQ(J?)
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2" = P(2)S,(z) + Ru(z),

where deg(R;(z)) < n. Sine the polynomials R; live in an n-dimensional vector space
spanned by 0, z,...,2" ! and since there are n + 1 of them, they are linearly dependent.
Thus there exist ag,aq,...,a, € R, not all 0, such that

i=0
Counsider then
apx' = agP(2)So(x) + agRo(x)

a17* = a1 P(2)S1(x) + a1 Ry ()
asx* = ayP(2)Sy(x) + ayRy(w)

ant®" = an P(2)S,(x) + ap Ry (z),

which we may sum to obtain

n n n

Z aiz® = P(x) Y a;S:(z) + Z a;Ri(x) = P(z)Q(x),

i=0 1=0 1=0

where Q(z) = >, a;Si(x).



Solution to Problem 3. We consider 7 points in the (z,y)-plane with coordinates
(ai, b;). The condition a; + b; < 2 implies that these all lie in a triangle bound by z and
y axis (since a;, b; are non negative) and the line y = 2 — x. We may split this triangle
into six regions as in the image below.
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So one of these regions contains two points. It is now easy
to verify that two points in the same regions will satisfy the * |
condition.
0 T — T
0 1 2

Solution to Problem 4. This sequence can only be unbounded if for any C' > 0,
a, > Cn? for some n. We may transform this condition into:

1
1 2) < =—=
+ cos(nmv/'2) o

We note that cosine is close to —1 only when the argument is near and odd integer
multiple p of 7 so we expand it using Taylor’s series around pr:

1 + cos(pr + (pr — nwV2)) = (pr — nwv'2)2/2 + O((pr — nwV/2)%)

By absorbing some terms into the constant this reduces to showing that for any constant
C > 0 there is some p,n for which

or

We show that this is impossible for, say, C' = 10. Suppose that there was such a pair
p,n. Since p is odd, we have that

&4

(B 2= (- 3) (bove) <20
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Thus

which is a contradiction.

Solution to Problem 5. Answer: Var[X] = n!.



We have that

E[det(A)] = E

> (=1 iy
=1

oc€ESy
= > (O ][E[4i.w] = o,
oESy i=1

where we used that the entries of A are mutually independent.

Furthermore, we have that

E[det(A%)] = E[det(A)?] = E (Z(—nﬂgn(ﬂﬂmp(i))

€Sy i=1
= Z Z )ien(@) +sign(r) g ﬁ Aio())Air(i)
oc€Sy TESK 1=1
_ Z Z 51gn )+sign (T HE o) Az T(Z)] ’
0€Sy TESK

where the last equality follows as for distinct i € [n], A; (i) Ai 7y are independent vari-
ables. Using independence again, we see that E [Ai7a(i)Ai,T(i)} =E [Aw(i)] E [Am(i)} =0
unless (i) = 7(4), in which case it is equal to 1. Hence, the product above is non-zero if

and only if ¢ = 7, in which case it is equal to 1. Therefore,

E[det(A%)] = ) (—1)>@) . 1 = nl.

gES,



