Cohomological approaches to rationality of L-values

Julio de Mello Bezerra

University of Regensburg Warwick Junior Number Theory Seminar

November 14th

Let

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} \quad \text{and} \quad \Gamma(s) := \int_0^{\infty} e^{-u} u^{s-1} du,$$

for $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$.

Let

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} \quad \text{and} \quad \Gamma(s) := \int_0^{\infty} e^{-u} u^{s-1} du,$$

for $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$. Note that, for $\lambda \in \mathbb{R}_+$,

$$\lambda^{-s}\Gamma(s) = \int_0^\infty e^{-t\lambda} t^{s-1} dt$$

after using the change of variables $u = \lambda t$.

Let

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s} \quad \text{and} \quad \Gamma(s) := \int_0^{\infty} e^{-u} u^{s-1} du,$$

for $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$. Note that, for $\lambda \in \mathbb{R}_+$,

$$\lambda^{-s}\Gamma(s) = \int_0^\infty e^{-t\lambda} t^{s-1} dt$$

after using the change of variables $u = \lambda t$. Then one can set $\lambda = n$ and sum over all natural numbers:

$$\zeta(s)\Gamma(s) = \int_0^\infty \sum_{n=1}^\infty e^{-nt} t^{s-1} dt.$$

We may define $G(t) := \frac{e^{-t}}{1 - e^{-t}} = \sum_{n=1}^{\infty} e^{-nt}$.

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty G(t) t^{s-1} dt.$$

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty G(t) t^{s-1} dt.$$

Lemma

Under certain hypotheses on $f \in C^{\infty}(\mathbb{R}_{\geq 0})$, $M(f, s) := \frac{1}{\Gamma(s)} \int_0^{\infty} f(t)t^{s-1}dt$ admits an analytic continuation to all of \mathbb{C} , and for $k \in \mathbb{N}$, $M(f, -k) = (-1)^k (\frac{d}{dt})^k f(t)|_0$.

We also have that $\zeta(s) = \frac{1}{s-1}M(tG(t), s-1)$.

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty G(t) t^{s-1} dt.$$

Lemma

Under certain hypotheses on $f \in C^{\infty}(\mathbb{R}_{\geq 0})$, $M(f, s) := \frac{1}{\Gamma(s)} \int_0^{\infty} f(t)t^{s-1}dt$ admits an analytic continuation to all of \mathbb{C} , and for $k \in \mathbb{N}$, $M(f, -k) = (-1)^k (\frac{d}{dt})^k f(t)|_0$.

We also have that $\zeta(s) = \frac{1}{s-1}M(tG(t), s-1).$

Therefore
$$\zeta(-k) = \frac{(-1)^k B_{k+1}}{k+1},$$

where $B_k \in \mathbb{Q}$ is the *k*-th Bernoulli number, defined by

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{te^{-t}}{1 - e^{-t}} = tG(t).$$

Dirichlet L-function and Hurwitz Zeta function

Analogously, for $\chi : \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}^{\times}$ and $x \in [0, 1)$, we define

$$L(s,\chi) := \sum_{n=1}^{\infty} \chi(n) n^{-s}$$
 and $\zeta(s,\chi) := \sum_{n=1}^{\infty} (n+\chi)^{-s}$,

Dirichlet L-function and Hurwitz Zeta function

Analogously, for $\chi : \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}^{\times}$ and $x \in [0, 1)$, we define

$$L(s,\chi) := \sum_{n=1}^{\infty} \chi(n) n^{-s}$$
 and $\zeta(s,\chi) := \sum_{n=1}^{\infty} (n+\chi)^{-s}$,

and conclude that

$$\zeta(-k,x) = -\frac{B_{k+1}(x)}{k+1} \quad \text{and} \quad L(-k,\chi) = -\sum_{a=1}^{N} \chi(a) N^k \frac{B_{k+1}(a/N)}{k+1},$$

where $B_n(x) \in \mathbb{Q}[x]$ is the *n*-th Bernoulli polynomial, defined by

$$\sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} = t \frac{e^{tx}}{e^t - 1}.$$

L-functions of Totally Real Number Fields

We make the following definitions.

• *F* is a totally real number field of degree g over \mathbb{Q} ;

L-functions of Totally Real Number Fields

- *F* is a totally real number field of degree g over \mathbb{Q} ;
- There are g complex embeddings $\tau : F \hookrightarrow \mathbb{C}$ factoring through \mathbb{R} and $F \otimes \mathbb{R} \cong \mathbb{R}^g$, with each axis given by an embedding $\tau \in I$;

L-functions of Totally Real Number Fields

- *F* is a totally real number field of degree g over \mathbb{Q} ;
- There are g complex embeddings τ : F → C factoring through R and F ⊗ ℝ ≃ ℝ^g, with each axis given by an embedding τ ∈ I;
- *O_F* is the ring of integers of F and *O_{F+}* the totally positive integers;

- *F* is a totally real number field of degree g over \mathbb{Q} ;
- There are g complex embeddings τ : F → C factoring through R and F ⊗ ℝ ≃ ℝ^g, with each axis given by an embedding τ ∈ I;
- *O_F* is the ring of integers of F and *O_{F+}* the totally positive integers;
- \Im is the group of fractional ideals, P^+ the subgroup of principal ideals with totally positive generators and $R_1 := \Im/P^+$ the *narrow class group*;

- *F* is a totally real number field of degree g over \mathbb{Q} ;
- There are g complex embeddings τ : F → C factoring through R and F ⊗ ℝ ≃ ℝ^g, with each axis given by an embedding τ ∈ I;
- *O_F* is the ring of integers of F and *O_{F+}* the totally positive integers;
- \Im is the group of fractional ideals, P^+ the subgroup of principal ideals with totally positive generators and $R_1 := \Im/P^+$ the *narrow class group*;
- For an ideal f ⊂ O_F, ℑ_f is the group of fractional ideals coprime to f;

- *F* is a totally real number field of degree g over \mathbb{Q} ;
- There are g complex embeddings τ : F → C factoring through R and F ⊗ ℝ ≃ ℝ^g, with each axis given by an embedding τ ∈ I;
- *O_F* is the ring of integers of F and *O_{F+}* the totally positive integers;
- \Im is the group of fractional ideals, P^+ the subgroup of principal ideals with totally positive generators and $R_1 := \Im/P^+$ the *narrow class group*;
- For an ideal f ⊂ O_F, ℑ_f is the group of fractional ideals coprime to f;
- R_{f} is the ray class group modulo f, which is a quotient of \mathfrak{T}_{f} ;

For $\mathfrak{f} \subset O_F$ we have the finite Hecke characters with conductor \mathfrak{f}

$$\chi\colon R_{\mathfrak{f}}\to\mathbb{C}^{\times}$$

giving rise to the Hecke L-function

$$L(\chi, s) := \sum_{\mathfrak{a} \subset O_F} \chi(\mathfrak{a}) N(\mathfrak{a})^{-s}.$$

For $\mathfrak{f} \subset O_F$ we have the finite Hecke characters with conductor \mathfrak{f}

$$\chi\colon R_{\mathfrak{f}}\to\mathbb{C}^{\times}$$

giving rise to the Hecke L-function

$$L(\chi, s) := \sum_{\mathfrak{a} \subset O_F} \chi(\mathfrak{a}) N(\mathfrak{a})^{-s}.$$

For $\mathfrak{b} \subset \mathcal{O}_F$ we define $\zeta(\mathfrak{b},\mathfrak{f},s) = \sum_{\mathfrak{[a]}\sim [\mathfrak{b}]} N(\mathfrak{a})^{-s}$ so we have

$$L(\chi, s) = \sum_{[\mathfrak{b}] \in R_{\mathfrak{f}}} \chi(\mathfrak{b}) \zeta(\mathfrak{b}, \mathfrak{f}, s).$$

We want to show that the values $L(\chi, -k) \in \mathbb{Q}(\chi)$ are rational up to the image of the character χ for $k \ge 0$.

Theorem (Siegel-Klingen)

With the definitions as above,

$$\zeta(\mathfrak{b},\mathfrak{f},1-k)\in\mathbb{Q}\quad\forall k\geq 1\in\mathbb{Z}.$$

Theorem (Siegel-Klingen)

With the definitions as above,

$$\zeta(\mathfrak{b},\mathfrak{f},1-k)\in\mathbb{Q}\quad\forall k\geq 1\in\mathbb{Z}.$$

Sketch of proof: Let f(z) be an $SL_2(\mathbb{Z})$ -Eisenstein series, $z \in \mathbb{H}$, of weight k with q-expansion

$$f(z) = \sum_{n=0}^{\infty} a_n q^n, \quad q = e^{2\pi i z}$$

and show that there are integers $c_{k,0}, \ldots, c_{k,r}$ such that

$$c_{k,0}a_0 + c_{k,1}a_1 + \dots + c_{k,r}a_r = 0, \quad c_{k,0} \neq 0$$

where $r := r(k) := \dim_{\mathbb{C}} M_k(SL_2(\mathbb{Z})).$

The Siegel-Klingen Theorem

Now show that for each $k \ge 1$ there is an Eisenstein series f(z) such that $a_0 = C\zeta(\mathfrak{b}, \mathfrak{f}, 1 - k)$ with $C, a_1, \ldots, a_r \in \mathbb{Q}$. The previous result implies that $a_0 \in \mathbb{Q}$ as desired.

The Siegel-Klingen Theorem

Now show that for each $k \ge 1$ there is an Eisenstein series f(z) such that $a_0 = C\zeta(\mathfrak{b}, \mathfrak{f}, 1 - k)$ with $C, a_1, \ldots, a_r \in \mathbb{Q}$. The previous result implies that $a_0 \in \mathbb{Q}$ as desired.

Example: The classical Eisenstein series

$$\mathbb{E}_{k}(z) = \frac{(k-1)!}{2(2\pi i)^{k}} \sum_{(m,n)\in\mathbb{Z}^{2}\setminus\{0\}} (mz+n)^{-k} =$$

$$= \frac{\zeta(1-k)}{2} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$

with $\sigma_{k-1}(n) := \sum_{d|n} d^{k-1}$ and even $k \ge 4$ gives

$$\zeta(1-k) = -\frac{2}{c_{k,0}} \sum_{j=1}^{r} \sigma_{k-1}(j) c_{k,j} \in \mathbb{Q}.$$

The Shintani Method

Let $\Delta := O_{F+}^{\times}$ be the set of totally positive units of O_F . For $\mathfrak{f} \subset O_F$ we have the additive characters

 $\xi \in U[\mathfrak{f}] \coloneqq \operatorname{Hom}(\mathcal{O}_F/\mathfrak{f}, \mathbb{C}^{\times}) \setminus \{1\},\$

defining the Lerch zeta function

$$\mathcal{L}(\xi\Delta,s) \coloneqq \sum_{\alpha \in \Delta_{\xi} \setminus O_{F+}} \xi(\alpha) N(\alpha)^{-s}.$$

where $\Delta_{\xi} := \{ \varepsilon \in \Delta \mid \xi(\varepsilon \alpha) = \xi(\alpha), \quad \forall \alpha \in O_F \}.$

The Shintani Method

Let $\Delta := O_{F+}^{\times}$ be the set of totally positive units of O_F . For $\mathfrak{f} \subset O_F$ we have the additive characters

 $\xi \in U[\mathfrak{f}] := \operatorname{Hom}(\mathcal{O}_F/\mathfrak{f}, \mathbb{C}^{\times}) \setminus \{1\},\$

defining the Lerch zeta function

$$\mathcal{L}(\xi\Delta,s) \coloneqq \sum_{\alpha \in \Delta_{\xi} \setminus O_{F_{+}}} \xi(\alpha) N(\alpha)^{-s}.$$

where
$$\Delta_{\xi} := \{ \varepsilon \in \Delta \mid \xi(\varepsilon \alpha) = \xi(\alpha), \quad \forall \alpha \in O_F \}.$$

Proposition

Assume that $|R_1| = 1$, then for $\chi \neq 1$ we have

$$L(\chi, s) = \sum_{\xi \in \Delta \setminus U[\mathfrak{f}]} c_{\chi}(\xi) \mathcal{L}(\xi \Delta, s).$$

The Shintani Decomposition

A cone generated by $\alpha = (\alpha_1, \dots, \alpha_m) \in O_{F+}^m$ is any set of the form $\sigma_{\alpha} := \{x_1\alpha_1 + \dots + x_m\alpha_m \mid x_1, \dots, x_m \in \mathbb{R}_{\geq 0}\}.$

Shintani's Unit Theorem

There is a set of cones Φ such that $\mathbb{R}^{g}_{+} = \bigcup_{\sigma \in \Phi} \sigma$, Φ is closed under the Δ action and the quotient $\Delta \setminus \Phi$ is a finite set.

When g = 2:

The Shintani Zeta Function

For $s \in \mathbb{C}$, $\operatorname{Re}(s) > 1$ and σ a cone, we define the *Shintani zeta function*:

$$\zeta_{\sigma}(\xi,s) = \sum_{\alpha \in \check{\sigma} \cap O_F} \xi(\alpha) N(\alpha)^{-s}.$$

The Shintani Zeta Function

For $s \in \mathbb{C}$, $\operatorname{Re}(s) > 1$ and σ a cone, we define the *Shintani zeta function*:

$$\zeta_{\sigma}(\xi,s) = \sum_{\alpha \in \check{\sigma} \cap O_F} \xi(\alpha) N(\alpha)^{-s}.$$

Theorem (Shintani, Cassou-Noguès)

 $\zeta_{\sigma}(\xi, s)$ admits a meromorphic continuation to \mathbb{C} and there exists a meromorphic function $\mathscr{G}_{\sigma}(t)$ on $F \otimes \mathbb{C}$ such that for each $k \in \mathbb{N}$,

$$\partial^k \mathscr{G}_{\sigma}(t) \Big|_{t_{\xi}} = \zeta_{\sigma}(\xi, -k).$$

Furthermore, if Φ is a Shintani decomposition, then

$$\mathcal{L}(\xi\Delta,s) = \sum_{\sigma \in \Delta_{\xi} \setminus \Phi} \zeta_{\sigma}(\xi,s).$$

 The *algebraic torus* T is the group scheme such that T(C) = Hom(O_F, C[×]);

- The *algebraic torus* T is the group scheme such that T(C) = Hom(O_F, C[×]);
- T has a Δ-action [δ] : T → T, and so does the open sub-scheme U := T \ {1};

- The *algebraic torus* T is the group scheme such that T(C) = Hom(O_F, C[×]);
- T has a Δ-action [δ] : T → T, and so does the open sub-scheme U := T \ {1};
- A Δ -equivariant sheaf is an \mathcal{O}_U -module \mathcal{F} together with a family of isomorphisms

$$\iota_{\delta} \colon [\delta]^* \mathscr{F} \xrightarrow{\cong} \mathscr{F}$$

which are compatible with the Δ action on U;

- The *algebraic torus* T is the group scheme such that T(C) = Hom(O_F, C[×]);
- \mathbb{T} has a Δ -action $[\delta] : \mathbb{T} \to \mathbb{T}$, and so does the open sub-scheme $U := \mathbb{T} \setminus \{1\};$
- A Δ -equivariant sheaf is an \mathcal{O}_U -module \mathcal{F} together with a family of isomorphisms

$$\iota_{\delta} \colon [\delta]^* \mathscr{F} \xrightarrow{\cong} \mathscr{F}$$

which are compatible with the Δ action on U;

For any Δ-equivariant sheaf ℱ on U, we define the *equivariant* global section by Γ(U/Δ, ℱ) := Γ(U, ℱ)^Δ;

- The *algebraic torus* T is the group scheme such that T(C) = Hom(O_F, C[×]);
- \mathbb{T} has a Δ -action $[\delta] : \mathbb{T} \to \mathbb{T}$, and so does the open sub-scheme $U := \mathbb{T} \setminus \{1\};$
- A Δ -equivariant sheaf is an \mathcal{O}_U -module \mathcal{F} together with a family of isomorphisms

$$\iota_{\delta} \colon [\delta]^* \mathscr{F} \xrightarrow{\cong} \mathscr{F}$$

which are compatible with the Δ action on U;

- For any Δ-equivariant sheaf ℱ on U, we define the *equivariant* global section by Γ(U/Δ, ℱ) := Γ(U, ℱ)^Δ;
- The *equivariant cohomology* H^m(U/Δ, −) is defined to be the *m*-th right derived functor of Γ(U/Δ, −).

For each finite character $\xi \in U$, let $\mathbb{Q}(\xi)$ be the number field obtained by adjoining the image of ξ to \mathbb{Q} . Then each torsion point $\xi \in U$ can be identified with Spec $\mathbb{Q}(\xi)$. For each finite character $\xi \in U$, let $\mathbb{Q}(\xi)$ be the number field obtained by adjoining the image of ξ to \mathbb{Q} . Then each torsion point $\xi \in U$ can be identified with Spec $\mathbb{Q}(\xi)$.

 $\xi = \operatorname{Spec} \mathbb{Q}(\xi)$ is a Δ_{ξ} -scheme, and the inclusion $\xi \to U$ is compatible with the inclusion $\Delta_{\xi} \subset \Delta$, so we have the specialization map

$$\xi^* \colon H^m(U/\Delta, \mathcal{O}_U) \to H^m(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}).$$

For each finite character $\xi \in U$, let $\mathbb{Q}(\xi)$ be the number field obtained by adjoining the image of ξ to \mathbb{Q} . Then each torsion point $\xi \in U$ can be identified with Spec $\mathbb{Q}(\xi)$.

 $\xi = \operatorname{Spec} \mathbb{Q}(\xi)$ is a Δ_{ξ} -scheme, and the inclusion $\xi \to U$ is compatible with the inclusion $\Delta_{\xi} \subset \Delta$, so we have the specialization map

$$\xi^* \colon H^m(U/\Delta, \mathcal{O}_U) \to H^m(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}).$$

Furthermore, there exists a canonical isomorphism

$$H^{g-1}(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}) \xrightarrow{\cong} \mathbb{Q}(\xi)$$

which allows us to identify them as \mathbb{Q} vector spaces.

Canonical Decomposition

Theorem (Bannai, Hagihara, Yamada, Yamamoto)

There exist a canonical class $\mathcal{G} \in H^{g-1}(U/\Delta, \mathcal{O}_U)$ and a homomorphism $\partial: H^m(U/\Delta, \mathcal{O}_U) \to H^m(U/\Delta, \mathcal{O}_U)$ induced by a differential operator on \mathcal{O}_U , such that

$$\xi^*(\partial^k \mathcal{G}) = \mathcal{L}(\xi \Delta, -k)$$

through the identification $H^{g-1}(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}) \xrightarrow{\cong} \mathbb{Q}(\xi)$.

Canonical Decomposition

Theorem (Bannai, Hagihara, Yamada, Yamamoto)

There exist a canonical class $\mathcal{G} \in H^{g-1}(U/\Delta, \mathcal{O}_U)$ and a homomorphism $\partial: H^m(U/\Delta, \mathcal{O}_U) \to H^m(U/\Delta, \mathcal{O}_U)$ induced by a differential operator on \mathcal{O}_U , such that

$$\xi^*(\partial^k \mathcal{G}) = \mathcal{L}(\xi \Delta, -k)$$

through the identification $H^{g-1}(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}) \xrightarrow{\cong} \mathbb{Q}(\xi)$.

The class \mathcal{G} is constructed from the previous generating functions $\mathscr{G}_{\sigma}(t)$ of Shintani zeta functions, by considering all possible Shintani cone decompositions of $F \otimes \mathbb{R}$.

Canonical Decomposition

Theorem (Bannai, Hagihara, Yamada, Yamamoto)

There exist a canonical class $\mathcal{G} \in H^{g-1}(U/\Delta, \mathcal{O}_U)$ and a homomorphism $\partial: H^m(U/\Delta, \mathcal{O}_U) \to H^m(U/\Delta, \mathcal{O}_U)$ induced by a differential operator on \mathcal{O}_U , such that

$$\xi^*(\partial^k \mathcal{G}) = \mathcal{L}(\xi \Delta, -k)$$

through the identification $H^{g-1}(\xi/\Delta_{\xi}, \mathcal{O}_{\xi}) \xrightarrow{\cong} \mathbb{Q}(\xi)$.

The class \mathcal{G} is constructed from the previous generating functions $\mathscr{G}_{\sigma}(t)$ of Shintani zeta functions, by considering all possible Shintani cone decompositions of $F \otimes \mathbb{R}$.

Assume that $|R_1| = 1$, then for $\chi \neq 1$ we have

$$L(\chi,-k) = \sum_{\xi \in U[\mathfrak{f}]/\Delta} c_{\chi}(\xi) \xi^*(\partial^k \mathcal{G}) \in \mathbb{Q}(\chi).$$

If the number field K is not totally real, then L(χ, −k) = 0 for all k ∈ Z₊ and χ a finite Hecke character.

- If the number field K is not totally real, then L(χ, −k) = 0 for all k ∈ Z₊ and χ a finite Hecke character.
- If |R₁| > 1 we may instead use the F[×]₊-scheme T̃ := ∐_{a∈3} T^a, where T^a := Hom(a, C[×]), to get a canonical representation of the Hecke L-function in terms of the cohomology class. To prove the rationality of the special L-values, one may simply sum over the narrow classes.

Let $\mathfrak b$ and $\mathfrak f$ be integral ideals as before and consider the following zeta function

$$\zeta(1,\mathfrak{fb}^{-1},s) := \sum_{\alpha \in (1+\mathfrak{fb}^{-1})^+/\Gamma} N(\alpha)^{-s}$$

where $\Gamma := \{ \varepsilon \in \Delta \mid \varepsilon \in 1 + \mathfrak{f}\mathfrak{b}^{-1} \}.$ Then

$$\zeta(\mathfrak{b},\mathfrak{f},s)=N(\mathfrak{b})^{-s}\zeta(1,\mathfrak{f}\mathfrak{b}^{-1},s).$$

Let \mathfrak{b} and \mathfrak{f} be integral ideals as before and consider the following zeta function

$$\zeta(1,\mathfrak{fb}^{-1},s) := \sum_{\alpha \in (1+\mathfrak{fb}^{-1})^+/\Gamma} N(\alpha)^{-s}$$

where $\Gamma := \{ \varepsilon \in \Delta \mid \varepsilon \in 1 + \mathfrak{fb}^{-1} \}.$ Then

$$\zeta(\mathfrak{b},\mathfrak{f},s)=N(\mathfrak{b})^{-s}\zeta(1,\mathfrak{f}\mathfrak{b}^{-1},s).$$

Note that $\mathbf{f}\mathbf{b}^{-1}$ is a \mathbb{Z} -module of rank g, so it defines a full lattice inside $F \otimes \mathbb{R}$. Therefore we may define the g-dimensional topological torus

$$T := (F \otimes \mathbb{R}) / \mathfrak{fb}^{-1} \cong (\mathbb{S}^1)^g,$$
$$0 \to \mathfrak{fb}^{-1} \to (F \otimes \mathbb{R}) \xrightarrow{\pi} T \to 0.$$

The Logarithm Sheaf

Let *A* be a Q-algebra and let $R_A := A[[Y - 1]] \cong A[[t]]$ be the power series ring on $Y = Y_1, \ldots, Y_g$ variables with isomorphism given by $Y_i \mapsto e^{t_i}$.

The Logarithm Sheaf

Let *A* be a Q-algebra and let $R_A := A[[Y - 1]] \cong A[[t]]$ be the power series ring on $Y = Y_1, \ldots, Y_g$ variables with isomorphism given by $Y_i \mapsto e^{t_i}$.

We define the *Logarithm sheaf* on T as the sheaf assigning to each open $U \subset T$

$$\mathcal{L}\mathrm{og}(U) = \{ f : \pi^{-1}(U) \to R_A \mid f(x+l) = Y^{-l}f(x) \ \forall l \in \mathfrak{fb}^{-1}, x \in \pi^{-1}(U) \}.$$

The Logarithm Sheaf

Let *A* be a Q-algebra and let $R_A := A[[Y - 1]] \cong A[[t]]$ be the power series ring on $Y = Y_1, \ldots, Y_g$ variables with isomorphism given by $Y_i \mapsto e^{t_i}$.

We define the *Logarithm sheaf* on T as the sheaf assigning to each open $U \subset T$

$$\mathcal{L}$$
og $(U) = \{ f : \pi^{-1}(U) \to R_A \mid f(x+l) = Y^{-l}f(x) \; \forall l \in \mathfrak{fb}^{-1}, x \in \pi^{-1}(U) \}.$

Note that for the Hurwitz Zeta function

$$\zeta(s,x) = \frac{1}{\Gamma(s)} \int_0^\infty G(t,x) t^{s-1} dt,$$

the generating function is a section of this sheaf

$$G(t,x) := \frac{e^{-xt}}{1-e^{-t}} = \sum_{n=1}^{\infty} e^{-(n+x)t}.$$

Polylogarithm Class

The logarithm sheaf \mathcal{L} og is a Γ -equivariant sheaf and we can define a unique cohomology class

```
pol \in H^{g-1}((T \setminus \{0\})/\Gamma; \mathcal{L}og)
```

called the topological polylogarithm.

The logarithm sheaf \mathcal{L} og is a Γ -equivariant sheaf and we can define a unique cohomology class

$$pol \in H^{g-1}((T \setminus \{0\})/\Gamma; \mathcal{L}og)$$

called the *topological polylogarithm*.

When specialized to a torsion point $h \in T$ stabilized by Γ , this class yields

$$Eis(h) := h^* pol \in H^{g-1}(\Gamma, \mathcal{L}og_h) = H^{g-1}(\Gamma, R_A)$$

the *Eisenstein class* associated to h. There exists further an evaluation map

$$ev: H^{g-1}(\Gamma, R_A) \longrightarrow (R_A)_{\Gamma}.$$

Rationality of Coefficients

For any subring $A \subset \mathbb{C}$, we have a commutative diagram

For any subring $A \subset \mathbb{C}$, we have a commutative diagram

For $A = \mathbb{C}$, the polylogarithm class $pol_{\mathbb{C}}$ can be given explicitly using certain generalized Eisenstein series.

Furthermore, $(R_{\mathbb{C}})_{\Gamma} = \mathbb{C}[[w]] \subset \mathbb{C}[[t]]$ for $w := t_1 \cdots t_g$.

Theorem (Beilinson-Kings-Levin)

Using our previous definitions, we have

$$ev(1^*pol_{\mathbb{C}}) = (-1)^{g-1} \sum_{k \ge 0} \zeta(1, \mathfrak{fb}^{-1}, -k) \frac{w^k}{(k!)^g} \in \mathbb{C}[[w]].$$

Theorem (Beilinson-Kings-Levin)

Using our previous definitions, we have

$$ev(1^*pol_{\mathbb{C}}) = (-1)^{g-1} \sum_{k \ge 0} \zeta(1, \mathfrak{fb}^{-1}, -k) \frac{w^k}{(k!)^g} \in \mathbb{C}[[w]].$$

From this theorem and the previous commutative diagram, it follows from setting $A = \mathbb{Q}$ that $\zeta(1, \mathfrak{fb}^{-1}, -k) \in \mathbb{Q}$ for $k \ge 0$.

Theorem (Beilinson-Kings-Levin)

Using our previous definitions, we have

$$ev(1^*pol_{\mathbb{C}}) = (-1)^{g-1} \sum_{k \ge 0} \zeta(1, \mathfrak{fb}^{-1}, -k) \frac{w^k}{(k!)^g} \in \mathbb{C}[[w]].$$

From this theorem and the previous commutative diagram, it follows from setting $A = \mathbb{Q}$ that $\zeta(1, \mathfrak{fb}^{-1}, -k) \in \mathbb{Q}$ for $k \ge 0$.

Remark: This approach should give a framework that generalizes the previous approaches.

Let c be an integral ideal coprime to \mathfrak{fb}^{-1} . By setting $A := \mathbb{Z}[\frac{1}{N(\mathfrak{c})}]$, a careful modification of the previous theorem yields:

Theorem (Deligne-Ribet, Cassou-Noguès)

For $f \neq O_F$ and $k \ge 0$ one has

$$(N\mathfrak{c})^{1+k}\zeta(\mathfrak{b},\mathfrak{f},-k)-\zeta(\mathfrak{b}\mathfrak{c},\mathfrak{f},-k)\in N\mathfrak{b}^k\mathbb{Z}[N(\mathfrak{c})^{-1}].$$

If $f = O_F$ the result holds for $k \ge 1$.

This type of theorem is what is known as an "integrality result". It allows us to define p-adic L-functions!

Suppose now that p is an odd prime and χ has values in $\overline{\mathbb{Q}_p}^{\times}$.

Theorem (Deligne-Ribet, Cassou-Noguès, Barsky)

There exists an unique continuous function $L_p(\chi, s) : \mathbb{Z}_p \to \overline{\mathbb{Q}_p}$ such that

$$L_p(\chi, 1-k) = L(\chi \omega^{-k}, 1-k) \prod_{\mathfrak{p}|p} (1-\chi \omega^{-k}(\mathfrak{p})N\mathfrak{p}^{k-1}) \quad \forall k \ge 0,$$

where ω is the Teichmüller character and the product is over the primes of *F* above *p*.

This theorem can be deduced from the previous integrality results using the technique of p-adic interpolation developed by Kubota-Leopoldt.