Creating accessible mathematics content

Mathematics Teaching and Learning Seminar

Martyn Parker (Department of Statistics)

Today's aims

- 1. What is accessibility?
- 2. Signpost tools that focus on technical aspects of mathematics accessibility.
 - LaTeX and accessibility.
 - Other approaches.
- 3. Highlight resources.

Huge area, not everything will be covered today.

What is accessibility?

Legal	Positive for all
A product or services can be used by everyone, no matter how they engage with it.	Has benefits for all: availability of material, structure of resources, flexibility of engagement.
- Public Sector Bodies (Websites and Mobile Applications) (No. 2) Accessibility Regulations 2018.	Encourages new ways to think about inclusive education
- Equality and Human Rights Commission (EHRC) enforce this provision and Government digital services (GDS) accessibility audits.	University and society sees accessibility as a priority

Technical point of view: LaTeX + PDF

Almost all accessibility requests are clear print PDF or large print PDF.

- Font size: clear print ideally 14pt, large print ideally 18pt. (Not photocopied.)
- Font: Arial, or equivalent
- Font shape: no italics, underlining or big BLOCKS OF CAPITALS.
- Left aligned text.
- Line spacing: 1.5 recommended.
- High contrast colours. Contrast checker

Technical point of view: etoolbox

LaTeX's etoolbox allows for parameterised documents/changing font/appearance etc

\usepackage{etoolbox}

```
\newbool{clearprint}
\boolfalse{clearprint}
%\booltrue{clearprint} % uncomment if required
\ifbool{clearprint}{% fork for packages, before document
   \setlength{\parindent}{0.0pt}
   \setlength{\parskip}{1.0\baselineskip}
   \renewcommand{\emph}{\textbf}

   \usepackage{helvet}% for PDFLaTeX
   \renewcommand{\familydefault}{\sfdefault}% for PDFLaTeX
   \usepackage{setspace}
   \onehalfspacing

% 14pt/18pt font in PDFLaTeX takes some effort: memoir/scrbook
% but this is a document class change.
}{} % the 'else' is left empty here
```

%XeLaTeX provides better font control
\usepackage[fontsize=14pt]{scrextend}
\usepackage{fontspec}
\setmainfont{Arial}

So done?

So done? LaTeX PDF documents

Use keyboard rather than mouse	No (Tagging)
Adapt content to needs (contrast, dark mode)	Maybe
Use a screenreader (don't assume)	No
Alternative text for images, charts, diagrams etc	No
Screen magnification	Yes
Voice commands	No

Technical point of view: LaTeX + PDF

 LaTeX does not produce accessible PDF output: removes structural integrity of the content, semantics of equations removed.

"The event
$$A$$
 has probability $\frac{4}{36} = \frac{1}{9}$ and the event B has probability $\frac{6}{36} = \frac{1}{6}$."

Is actually "4161 The event A has probability 36 = 9 and the event B has probability 36 = 6."

- It is not just equations: tables, sections, figures etc are all a problem.
- LaTeX is Turing complete so not unexpected.

Technical point of view: maths

Three accessible formats

- Word: with the Equation Editor to create equations, not the focus of today.
- HTML: with MathJax to render mathematics.
- EPub3: least supported format, not the focus today.

Technical point of view: HTML

Works with any Accessible Rich Internet Application (ARIA) aware screen reader (JAWS/NVDA).

- Navigation, chunking, zoom, copy/paste, colour, size and layout changes.
- Structural integrity enables assistive technology including text-to-speech, screen readers, electronic Braille.
- All browsers.

Moodle already uses MathJax to render equations, so provided you use LaTeX: (x^2) not x^2 to enter equations

- Quizzes
- Forums etc

Retrofitting accessibility

Retrofitting accessibility: Pandoc

Pandoc is a universal document converter

LaTeX to HTML

```
pandoc lecturenotes.tex --number-sections -standalone
    -mathjax -o lecturenotes.html
```

LaTeX to Word

```
pandoc mydoc.tex -o mydoc.docx
```


Retrofitting accessibility: LaTeXML

LaTeXML (or LaTeXML) can produce accessible HTML from existing tex files LaTeX to HTML:

So done?

Retrofitting accessibility: Pandoc & LaTeXML

- Conversion is not perfect.
 - Some LaTeX packages/commands will not work (\xymatrix,\hfill); there is no HTML or Word equivalent.
 - LaTeXML has known bugs.
 - Avoid "input", "include", "graphicspath".
- Expect manual checking after the conversion, followed by
 - Revisions of LaTeX file
 - Changing environments/packges
- Work still required for image alternative text.
 - LaTeXML puts figure captions as alt-text, but removes any maths content!

So done?

Use keyboard rather than mouse	Yes
Adapt content to needs (contrast, dark mode)	Yes
Use a screenreader (don't assume)	Yes
Alternative text for images, charts, diagrams etc	Yes -ish (provide all have captions suitable for alt-text)
Screen magnification	Yes
Voice commands	Yes

Retrofitting accessibility: alternative tex

- LaTeXML uses caption text as alt-text.
- Alt-text is not necessarily the same as a caption.
 - Alt-text is not visible on a website while captions are visible below the image.
 - Alt-text is read by screen readers in place of images and must convey a
 description of the image for someone who cannot see the image.

A caption might say "Graph of
$$f(x) = \sin\left(\frac{1}{x}\right)$$
 for $x > 0$."

This is not suitable alt-text.

• So, work is required on captions/alt-text.

Accessible Handwriting

- Handwriting is not technically accessible.
- Mathpix can read handwritten mathematics and convert it to a variety of accessible formats.
 - Either write directly on the app.
 - Take a photo.
 - Scan a PDF.

Let $\Omega = f(\omega_1, ..., \omega_n) = \omega / \omega_i \in f_1, ..., -\frac{3}{3}$. Then

by the fundamental multiplication rule we have $|\Omega| = \frac{r \times r \times ... \times r}{n + i m e s} = r^n$.

Let $A_k = f \omega \in \Omega / \omega(i) \neq k \ \forall \ 1 \leq i \leq n \frac{1}{3}$. Then $|A_k| = (r-i)^n$ (See Example 2.43). Since each

Sequence is equally likely, we have $P(A_k) = \frac{|A_k|}{|A_k|}$.

Hence, $P(A_k) = \frac{(r-i)^n}{r^n} = (1-1)^n$.

Let \$\Omega=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right)=\omega \mid \omega_{i} \in\{1, \ldots, \r\}\right\}\$. Then

by the fundamental muitiplication rule we have $|\Omega| = \$ | \text { times }=r^{n}\$

Let $A_{k}=\\sum \left(\sum \int \sum \int \int \int x \right)$ Let $A_{k}=\\sum \int \sum \int \int x dx \cdot (x-1)^{n} \$ Characteristics in $\sum \int \int x dx \cdot (x-1)^{n} \cdot (x$

Let
$$\Omega = \{(\omega_1, \dots, \omega_n) = \omega \mid \omega_i \in \{1, \dots, r\}\}$$
. Then by the fundamental multiplication rule we have $|\Omega| = \underbrace{r \times \dots \times r}_{n \text{ times}} = r^n$ Let $A_k = \{\omega \in \Omega \mid \omega(i) \neq k \quad \forall 1 \leqslant i \leqslant n\}$. Then $|A_k| = (r-1)^n$ (See Example 2.43). Since each sequence is equally likely, we have $\mathbb{P}(A_k) = \frac{|A_k|}{|\Omega|}$. Hence $\mathbb{P}(A_k) = \frac{(r-1)^n}{r^n} = (1-1/r)^n$.

Accessibility by design

- Inclusive and accessible documents by design are effective and more efficient.
- R Markdown and Bookdown provide a markdown alternative.
 - LaTeX for the equations and "markup" for the document.
 - Focus is on content, templates control document properties and appearance.
 - Can specify alternative text during construction.
 - Can produce PDF, HTML, Beamer, Word etc formats from one document.
- Example lecture notes (external page).

Summary

Output	Accessible?	Also	Comments
PDF		Provide clear print and/or large print in electronic form	Provide all at the start: reduce the queries.
HTML	Yes, with MathJax	Think about captions and alt-text for images	 Use LaTeX in Moodle. Use Pandoc or LaTeXML to convert. Check the output. RMarkdown/Bookdown to do everything at once
Handwriting	No	Make accessible with Mathpix	
Video captions	Auto generate	Add statement to Moodle regarding autogenerated captions.	

Our approach

- We have people who invested time to test ideas and create an "accessible by design" approach.
- We used and trained our students to help convert materials: summer interns.
- Recommend statement on Moodle pages:
 - Captions are autogenerated, who to ask if there are queries.
 - Who to contact if some material cannot be accessed.
- Haven't covered: Desmos, BrailleR, Data Sonification, how to write alt-text.
- "How to Resources" at the end of the presentation

Questions

Resources

Resources

- University's Accessibility Workshops
- University's Moodle support guides
- Good Practice on Inclusive Curricula in the Mathematical Sciences (2012)

Resources: LaTeX + PDF

- PDF accessibility and tagging.
- LaTeX PDF accessibility and PDF standards.

Resources: Moodle part 1

- Moodle accessible course formats
- Moodule creating accessible content
- Moodle images: alt text and text alternatives
- Moodle accessibility quick guide
- Using clear and concise language
- Using meaningful link text
- Using Moodle accessibility tools
- Using sections to organise content

Resources: Moodle part 2

- Using LaTeX or the Equation Editor with Moodle.
- Create Moodle quizzes directly from LaTeX using the Moodle package.

Resources: Pandoc

• Pandoc provides example conversions.

Resources: RMarkdown and Bookdown

- Instructions on making Lecture notes with Bookdown includes a workflow from LaTeX to Bookdown.
- R as a basis for writing accessible mathematics delivered at CETL-MSOR 2019.
- A comparison of <u>Markdown vs LaTeX</u>.
- A web page created using R Markdown and the source code for the same web page
- Teams Bookdown usergroup
- Accessible R Markdown Documents written by the author of BrailleR.
- A R Markdown Thesis Template from Oxford University.

Alternative text

- <u>DIAGRAM Center</u> provide guidance and example alternative text descriptions including for <u>complex images</u> and the <u>UK Association for Accessible Formats</u> provides standards and guides.
- Examples for creating alternative descriptions/representations for <u>Finite-state</u>
 <u>Machines diagrams</u>.
- How to describe images provides a wide range of different examples and guidelines for descriptive text. Think of this as a training resource.
- How to make a Klein Bottle from an old pair of jeans

Interactive figures

- <u>Desmos</u> is free and built for <u>accessibility</u>. For example, Braille support, audio trace, maths aware voice over, tactile diagrams, screen reader.
- BrailleR has lots of ways to present data in accessible ways. For example:
- Data sonification represents data by sound.

Programming with LaTeX

- Basic interpreter in TeX
- Mars rover