Integrable systems and duality

Based on Chen, de Gier, Wheeler

"Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation"

- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.
- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a duality function for X and Y iff:

$$
\forall a \in A, b \in B, \forall t \geqslant 0, \quad \mathbb{E}_{a}\left[\Psi\left(X_{t}, b\right)\right]=\mathbb{E}^{b}\left[\Psi\left(a, Y_{t}\right)\right]
$$

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a duality function for X and Y iff:

Let $\left(P_{t}\right)$ and $\left(Q_{t}\right)$ be semi-groups of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. Recall: $P_{t} f(a)=\mathbb{E}_{a}\left[f\left(X_{t}\right)\right]$.

$$
\begin{aligned}
\forall a \in A, b \in B, \forall t & \geqslant 0, \quad \mathbb{E}_{a}\left[\Psi\left(X_{t}, b\right)\right]=\mathbb{E}^{b}\left[\Psi\left(a, Y_{t}\right)\right] . \\
& \Longleftrightarrow \quad P_{t} \Psi(\cdot, b)(a)=Q_{t} \Psi(a, \cdot)(b) .
\end{aligned}
$$

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a duality function for X and Y iff:
\rightarrow Let $\left(P_{t}\right)$ and $\left(Q_{t}\right)$ be semi-groups of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. Recall: $P_{t} f(a)=\mathbb{E}_{a}\left[f\left(X_{t}\right)\right]$.
- Assume that the infinitesimal generators L and M are well-defined.

$$
\begin{aligned}
\forall a \in A, b \in B, \forall t & \geqslant 0, \quad \mathbb{E}_{a}\left[\Psi\left(X_{t}, b\right)\right]=\mathbb{E}^{b}\left[\Psi\left(a, Y_{t}\right)\right] \\
& \Longleftrightarrow P_{t} \Psi(\cdot, b)(a)=Q_{t} \Psi(a, \cdot)(b) \\
& \Longleftrightarrow \quad L[\Psi(\cdot, b)](a)=M[\Psi(a, \cdot)](b) .
\end{aligned}
$$

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a duality function for X and Y iff:

Let $\left(P_{t}\right)$ and $\left(Q_{t}\right)$ be semi-groups of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. Recall: $P_{t} f(a)=\mathbb{E}_{a}\left[f\left(X_{t}\right)\right]$.

- Assume that the infinitesimal generators L and M are well-defined.

$$
\begin{aligned}
\forall a \in A, b \in B, \forall t & \geqslant 0, \quad \mathbb{E}_{a}\left[\Psi\left(X_{t}, b\right)\right]=\mathbb{E}^{b}\left[\Psi\left(a, Y_{t}\right)\right] \\
& \Longleftrightarrow P_{t} \Psi(\cdot, b)(a)=Q_{t} \Psi(a, \cdot)(b) . \\
& \Longleftrightarrow \quad L[\Psi(\cdot, b)](a)=M[\Psi(a, \cdot)](b) .
\end{aligned}
$$

- Write

$$
\begin{align*}
L[\Psi(\cdot, b)](a) & =\sum_{a^{\prime} \in A} \ell\left(a, a^{\prime}\right) \Psi\left(a^{\prime}, b\right), \\
M[\Psi(a, \cdot)](b) & =\sum_{b^{\prime} \in B} m\left(b, b^{\prime}\right) \Psi\left(a, b^{\prime}\right) . \tag{Gen}
\end{align*}
$$

Duality for Markov processes: Definition

- Given two Markov processes on state spaces A and B,

$$
X=\left(\Omega_{A}, \mathcal{F}_{A},\left(X_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}_{a}\right\}_{a \in A}\right), \quad Y=\left(\Omega_{B}, \mathcal{F}_{B},\left(Y_{t}\right)_{t \geqslant 0},\left\{\mathbb{P}^{b}\right\}_{b \in B}\right)
$$

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a duality function for X and Y iff:

Let $\left(P_{t}\right)$ and $\left(Q_{t}\right)$ be semi-groups of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. Recall: $P_{t} f(a)=\mathbb{E}_{a}\left[f\left(X_{t}\right)\right]$.

- Assume that the infinitesimal generators L and M are well-defined.

$$
\begin{aligned}
\forall a \in A, b \in B, \forall t & \geqslant 0, \quad \mathbb{E}_{a}\left[\Psi\left(X_{t}, b\right)\right]=\mathbb{E}^{b}\left[\Psi\left(a, Y_{t}\right)\right] \\
& \Longleftrightarrow P_{t} \Psi(\cdot, b)(a)=Q_{t} \Psi(a, \cdot)(b) . \\
& \Longleftrightarrow \quad L[\Psi(\cdot, b)](a)=M[\Psi(a, \cdot)](b) .
\end{aligned}
$$

- Write

$$
\left.\begin{array}{rl}
L[\Psi(\cdot, b)](a) & =\sum_{a^{\prime} \in A} \ell\left(a, a^{\prime}\right) \Psi\left(a^{\prime}, b\right), \\
M[\Psi(a, \cdot)](b) & =\sum_{b^{\prime} \in B} m\left(b, b^{\prime}\right) \Psi\left(a, b^{\prime}\right) .
\end{array}\right\} \text { left actions }
$$

Duality for Markov processes: Definition

$$
\Psi: A \times B \rightarrow \mathbb{C} \text { is a duality function. }
$$

§

$$
\forall a \in A, b \in B, \quad L[\Psi(\cdot, b)](a)=M[\Psi(a, \cdot)](b)
$$

where

$$
\begin{align*}
L[\Psi(\cdot, b)](a) & =\sum_{a^{\prime} \in A} \ell\left(a, a^{\prime}\right) \Psi\left(a^{\prime}, b\right), \tag{Gen}\\
M[\Psi(a, \cdot)](b) & =\sum_{b^{\prime} \in B} m\left(b, b^{\prime}\right) \Psi\left(a, b^{\prime}\right) .
\end{align*}
$$

Duality for Markov processes: Matrix formalism

- Consider vector spaces with elements of A and B as bases,

$$
\mathbb{A}=\operatorname{Span}\{|a\rangle, a \in A\}, \quad \mathbb{B}=\operatorname{Span}\{|b\rangle, b \in B\}
$$

> Define an element in the tensor product $|\Psi\rangle \in \mathbb{A} \otimes \mathbb{B}$,

$$
|\Psi\rangle=\sum_{\substack{a \in A \\ b \in B}} \Psi(a, b)|a\rangle \otimes|b\rangle .
$$

Duality for Markov processes: Matrix formalism

- Consider vector spaces with elements of A and B as bases,

$$
\mathbb{A}=\operatorname{Span}\{|a\rangle, a \in A\}, \quad \mathbb{B}=\operatorname{Span}\{|b\rangle, b \in B\} .
$$

- Define an element in the tensor product $|\Psi\rangle \in \mathbb{A} \otimes \mathbb{B}$,

$$
|\Psi\rangle=\sum_{\substack{a \in A \\ b \in B}} \Psi(a, b)|a\rangle \otimes|b\rangle .
$$

- Define linear operators $\mathbb{L} \in \operatorname{End}(\mathbb{A})$ and $\mathbb{M} \in \operatorname{End}(\mathbb{A})$,

$$
\mathbb{L}|a\rangle=\sum_{a^{\prime} \in A} l\left(a^{\prime}, a\right)\left|a^{\prime}\right\rangle, \quad \mathbb{M}|b\rangle=\sum_{b^{\prime} \in B} m\left(b^{\prime}, b\right)\left|b^{\prime}\right\rangle,
$$

where coefficients $\ell\left(a^{\prime}, a\right)$ and $m\left(a^{\prime}, a\right)$ are given by (Gen).

- \mathbb{L} and \mathbb{M} are right actions.

Duality for Markov processes: Matrix formalism

Prop. 1.1: Duality relation is equivalent to $\mathbb{L}|\Psi\rangle=\mathbb{M}|\Psi\rangle$.

Duality for Markov processes: Matrix formalism

Prop. 1.1: Duality relation is equivalent to $\mathbb{L}|\Psi\rangle=\mathbb{M}|\Psi\rangle$.

Proof: Direct computation.

$$
\begin{aligned}
\mathbb{L}|\Psi\rangle & =\sum_{a^{\prime} \in A} \sum_{\substack{a \in A \\
b \in B}} \ell\left(a^{\prime}, a\right) \Psi(a, b)\left|a^{\prime}\right\rangle \otimes|b\rangle \\
& =\sum_{\substack{a \in A \\
b \in B}} \sum_{a^{\prime} \in A} \ell\left(a, a^{\prime}\right) \Psi\left(a^{\prime}, b\right)|a\rangle \otimes|b\rangle . \\
\mathbb{M}|\Psi\rangle & =\sum_{b^{\prime} \in A} \sum_{a \in A} m\left(b^{\prime}, b\right) \Psi(a, b)|a\rangle \otimes\left|b^{\prime}\right\rangle \\
& =\sum_{\substack{a \in A \\
b \in B}} \sum_{b^{\prime} \in B} m\left(b, b^{\prime}\right) \Psi\left(a, b^{\prime}\right)|a\rangle \otimes|b\rangle .
\end{aligned}
$$

Duality for Markov processes: Matrix formalism

Prop. 1.1: Duality relation is equivalent to $\mathbb{L}|\Psi\rangle=\mathbb{M}|\Psi\rangle$.

Proof: Direct computation.

$$
\begin{aligned}
\mathbb{L}|\Psi\rangle & =\sum_{a^{\prime} \in A} \sum_{\substack{a \in A \\
b \in B}} l\left(a^{\prime}, a\right) \Psi(a, b)\left|a^{\prime}\right\rangle \otimes|b\rangle \\
& =\sum_{\substack{a \in A \\
b \in B}}^{\sum_{\substack{a^{\prime} \in A}} l\left(a, a^{\prime}\right) \Psi\left(a^{\prime}, b\right)}|a\rangle \otimes|b\rangle . \\
\mathbb{M}|\Psi\rangle & =\sum_{\left.b^{\prime} \in A(\cdot b)\right](a)} \sum_{\substack{a \in A \\
b \in B}} m\left(b^{\prime}, b\right) \Psi(a, b)|a\rangle \otimes\left|b^{\prime}\right\rangle \\
& =\sum_{\substack{a \in A \\
b \in B}}^{\sum_{M[\Psi(a,)](b)} m\left(b, b^{\prime}\right) \Psi\left(a, b^{\prime}\right)}|a\rangle \otimes|b\rangle .
\end{aligned}
$$

- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

mASEP on the segment

The multi-species asymmetric simple exclusion process (mASEP):

- On the segment $\{1, \ldots, n\}$.
- At most one particle per site.
- Particles of type $1, \ldots, r$. Empty site is of type 0 .
- Higher-type particle can switch with a lower-type particle.
- Switch rates are: τ_{r} to the right, τ_{l} to the left. For $i>j$,

- ASEP $\Leftrightarrow r=1$.

A configuration can be encoded in two ways.

Monomial: $z^{\nu} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.

- $A=\left\{z^{\nu}:=\prod_{i=1}^{n} z_{i}^{\nu_{i}}, 0 \leqslant \nu_{i} \leqslant r\right\}$.

Sequence : $\mu=\left(\mu_{i}\right)_{1 \leqslant i \leqslant n} \in\{0, \ldots, r\}^{n}$.

- $B=\left\{\left|\mu_{1} \ldots \mu_{n}\right\rangle:=\bigotimes_{i=1}^{n}\left|\mu_{i}\right\rangle_{i}, 0 \leqslant \mu_{i} \leqslant r\right\}$

mASEP on the segment

A configuration can be encoded in two ways.

Monomial: $z^{\nu} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
> $A=\left\{z^{\nu}:=\prod_{i=1}^{n} z_{i}^{\nu_{i}}, 0 \leqslant \nu_{i} \leqslant r\right\}$.

Sequence : $\mu=\left(\mu_{i}\right)_{1 \leqslant i \leqslant n} \in\{0, \ldots, r\}^{n}$.

- $B=\left\{\left|\mu_{1} \ldots \mu_{n}\right\rangle:=\bigotimes_{i=1}^{n}\left|\mu_{i}\right\rangle_{i}, 0 \leqslant \mu_{i} \leqslant r\right\}$

Particle content: $0^{m_{0}} 1^{m_{1}} \ldots r^{m_{r}}, m_{i}=\left|\left\{k: \mu_{k}=i\right\}\right|$.

mASEP on the segment

A configuration can be encoded in two ways.
Example for $n=5$:

Monomial: $z^{\nu} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] . \rightsquigarrow$ Example: $z_{2} z_{3}^{2} z_{5}$.

- $A=\left\{z^{\nu}:=\prod_{i=1}^{n} z_{i}^{\nu_{i}}, 0 \leqslant \nu_{i} \leqslant r\right\}$.

Sequence : $\mu=\left(\mu_{i}\right)_{1 \leqslant i \leqslant n} \in\{0, \ldots, r\}^{n} . \rightsquigarrow$ Example: $|0,1,2,0,1\rangle$.

- $B=\left\{\left|\mu_{1} \ldots \mu_{n}\right\rangle:=\bigotimes_{i=1}^{n}\left|\mu_{i}\right\rangle_{i}, 0 \leqslant \mu_{i} \leqslant r\right\}$

Particle content: $0^{m_{0}} 1^{m_{1}} \ldots r^{m_{r}}, m_{i}=\left|\left\{k: \mu_{k}=i\right\}\right| . \leadsto$ Example: $0^{2} 1^{2} 2^{1}$.

mASEP on the segment

A configuration can be encoded in two ways.
Example for $n=5$:

Monomial: $z^{\nu} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right] . \rightsquigarrow$ Example: $z_{2} z_{3}^{2} z_{5}$.

- $A=\left\{z^{\nu}:=\prod_{i=1}^{n} z_{i}^{\nu_{i}}, 0 \leqslant \nu_{i} \leqslant r\right\}$.
- $\mathbb{A}=\left\{P \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]\right.$ s.t. the degree in each variable is at most $\left.r\right\}$.

Sequence : $\mu=\left(\mu_{i}\right)_{1 \leqslant i \leqslant n} \in\{0, \ldots, r\}^{n} . \rightsquigarrow$ Example: $|0,1,2,0,1\rangle$.

- $B=\left\{\left|\mu_{1} \ldots \mu_{n}\right\rangle:=\bigotimes_{i=1}^{n}\left|\mu_{i}\right\rangle_{i}, 0 \leqslant \mu_{i} \leqslant r\right\}$
- $\mathbb{B}=\bigotimes_{i=1}^{n} V_{i}$ where $V_{i} \cong \mathbb{C}^{r+1}$ and $\{|0\rangle, \ldots,|r\rangle\}=$ canonical basis of \mathbb{C}^{r+1}.

Particle content: $0^{m_{0}} 1^{m_{1}} \ldots r^{m_{r}}, m_{i}=\left|\left\{k: \mu_{k}=i\right\}\right| . \rightsquigarrow$ Example: $0^{2} 1^{2} 2^{1}$.

mASEP on the segment: Local generator

Δ Fix $t>0$.

- Consider two processes:

$$
\triangleright \tau_{r}=t \text { and } \tau_{l}=1:
$$

$\triangleright \tau_{r}=1$ and $\tau_{\ell}=t:$

- The forward dynamics of one is the backward dynamics of the other.
- Denote their generators by \mathbb{L} and \mathbb{M}.
- Initial conditions might be different!

mASEP on the segment: Local generator

- The local generators \mathbb{L}_{i} and \mathbb{M}_{i} act on particles at positions i and $i+1$.

$$
\mathbb{L}=\sum_{i=1}^{n-1} \mathbb{L}_{i},
$$

$$
\mathbb{M}=\sum_{i=1}^{n-1} \mathbb{M}_{i}
$$

mASEP on the segment: Local generator

- The local generators \mathbb{L}_{i} and \mathbb{M}_{i} act on particles at positions i and $i+1$.

$$
\mathbb{L}=\sum_{i=1}^{n-1} \mathbb{L}_{i},
$$

$$
\mathbb{M}=\sum_{i=1}^{n-1} \mathbb{M}_{i}
$$

- The local operators L_{i} and M_{i} are,

$$
L_{i}[f](\nu)=\sum_{\nu^{\prime}} \underbrace{\ell_{i}\left(\nu, \nu^{\prime}\right)}_{\tau\left(\nu \rightarrow \nu^{\prime}\right)} f\left(\nu^{\prime}\right), \quad M_{i}[f](\mu)=\sum_{\mu^{\prime}} \underbrace{m_{i}\left(\mu, \mu^{\prime}\right)}_{\tau\left(\mu \rightarrow \mu^{\prime}\right)} f\left(\mu^{\prime}\right) .
$$

mASEP on the segment: Local generator

- The local generators \mathbb{L}_{i} and \mathbb{M}_{i} act on particles at positions i and $i+1$.

$$
\mathbb{L}=\sum_{i=1}^{n-1} \mathbb{L}_{i},
$$

$$
\mathbb{M}=\sum_{i=1}^{n-1} \mathbb{M}_{i}
$$

- The local operators L_{i} and M_{i} are,

$$
L_{i}[f](\nu)=\sum_{\nu^{\prime}} \underbrace{\ell_{i}\left(\nu, \nu^{\prime}\right)}_{\tau\left(\nu \rightarrow \nu^{\prime}\right)} f\left(\nu^{\prime}\right), \quad M_{i}[f](\mu)=\sum_{\mu^{\prime}} \underbrace{m_{i}\left(\mu, \mu^{\prime}\right)}_{\tau\left(\mu \rightarrow \mu^{\prime}\right)} f\left(\mu^{\prime}\right) .
$$

- Example for ASEP $(r=1)$:

$$
\begin{aligned}
& L_{i}=\left(\ell_{i}\left(\nu, \nu^{\prime}\right)\right)_{\nu, \nu^{\prime}} \\
& \begin{array}{cccc}
00 \\
01 \\
10 \\
11
\end{array}\left(\begin{array}{cccc}
00 & 01 & 10 & 11 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & t & -t & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

mASEP on the segment: $r=1$, ASEP

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in A} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

mASER on the segment: $r=1$, ASEP

$>$ Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in \mathbb{A}} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

Proof:
> $\mathbb{L}_{i}|1\rangle=\mathbb{L}_{i}\left|z_{i} z_{i+1}\right\rangle=0$ due to the symmetry.
$>\mathbb{L}_{i}\left|z_{i}\right\rangle=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(z_{i+1}-z_{i}\right)=z_{i+1}-t z_{i}$.
$\frac{|(1)|}{i \quad i+1} \rightsquigarrow 1 \cdot \frac{|(1)|}{i+1}-t \cdot \frac{|(1)|}{i i_{i+1}}$
$>\mathbb{L}_{i}\left|z_{i+1}\right\rangle=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(z_{i}-z_{i+1}\right)=t z_{i}-z_{i+1}$.
$\left.{ }_{01}^{00} \begin{array}{cccc}00 & 01 & 10 & 11 \\ 0 & 0 & 0 & 0 \\ 10 \\ 0 & -1 & 1 & 0 \\ 0 & t & -t & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\frac{||(1)|}{i_{i+1}} \rightsquigarrow t \cdot \frac{|(1)| \mid}{i_{i+1}}-1 \cdot \frac{|(1)|}{i+1}$

$$
L_{i}=\left(\ell_{i}\left(\nu, \nu^{\prime}\right)\right)_{\nu, \nu^{\prime}}
$$

mASEP on the segment: Local duality

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a local duality function for X and Y iff:

$$
\begin{equation*}
\mathbb{L}_{i}|\psi\rangle=\mathbb{M}_{i}|\psi\rangle, \quad 1 \leqslant i \leqslant n-1, \tag{LD}
\end{equation*}
$$

where

$$
|\Psi\rangle=\sum_{\nu \in A \mu \in B} \sum \Psi(\nu, \mu) \prod_{k=1}^{n} z_{k}^{\nu_{k}}|\mu\rangle .
$$

mASEP on the segment: Local duality

- A function $\Psi: A \times B \rightarrow \mathbb{C}$ is a local duality function for X and Y iff:

$$
\begin{equation*}
\mathbb{L}_{i}|\psi\rangle=\mathbb{M}_{i}|\psi\rangle, \quad 1 \leqslant i \leqslant n-1, \tag{LD}
\end{equation*}
$$

where

$$
|\Psi\rangle=\sum_{\nu \in A} \sum_{\mu \in B} \Psi(\nu, \mu) \prod_{k=1}^{n} z_{k}^{\nu_{k}}|\mu\rangle .
$$

- Local duality \Rightarrow global duality. (The reverse is false in general.)
- We focus on the local duality, i.e. solutions of (LD).

mASEP on the segment: Local duality

- The following duality functions for ASEP are constructed in $[B C S+14]^{1}$.

[^0]
mASEP on the segment: Local duality

- The following duality functions for ASEP are constructed in $[B C S+14]^{1}$.

Theorem 4.1 \& 4.2 [Duality functions of ASEP on $\mathbb{Z}]$:

- ASEP occupation process $\left(\nu_{x}\right)_{x \in \mathbb{Z}}$ with rates $\left(\tau_{r}, \tau_{\ell}\right)=(1, t)$;
- Position process $\vec{x}(\mu)=\left(x_{1}(\mu)<\cdots<x_{n}(\mu)\right)$ with rates $\left(\tau_{r}, \tau_{\ell}\right)=(t, 1)$.

$$
\begin{aligned}
& \Psi(\nu, \mu)=\prod_{x \in \vec{x}(\mu)}\left(\prod_{i<x} t^{\nu_{i}}\right) \nu_{x} \\
& \Psi(\nu, \mu)=\prod_{x \in \vec{x}(\mu)}\left(\prod_{i \leqslant x} t^{\nu_{i}}\right) .
\end{aligned}
$$

[^1]
mASEP on the segment: Local duality

- The following duality functions for ASEP are constructed in $[B C S+14]^{1}$.

Theorem 4.1 \& 4.2 [Duality functions of ASEP on $\mathbb{Z}]$:

- ASEP occupation process $\left(\nu_{x}\right)_{x \in \mathbb{Z}}$ with rates $\left(\tau_{r}, \tau_{\ell}\right)=(1, t)$;

P Position process $\vec{x}(\mu)=\left(x_{1}(\mu)<\cdots<x_{n}(\mu)\right)$ with rates $\left(\tau_{r}, \tau_{l}\right)=(t, 1)$.

$$
\begin{aligned}
& \Psi(\nu, \mu)=\prod_{x \in \vec{x}(\mu)}\left(\prod_{i<x} t^{\nu_{i}}\right) \nu_{x}, \\
& \Psi(\nu, \mu)=\prod_{x \in \vec{x}(\mu)}\left(\prod_{i \leqslant x} t^{\nu_{i}}\right) .
\end{aligned}
$$

The first one can be recovered using the framework of ${ }^{2}$ but not the second one.

[^2]
mASEP on the segment: Something wrong...

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in \mathbb{A}} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

- \mathbb{L}_{i} acts on polynomials faithfully for $r=1$.

mASEP on the segment: Something wrong...

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in \mathbb{A}} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

- \mathbb{L}_{i} acts on polynomials faithfully for $r=1$.

For $r \geqslant 2$, consider the local dynamics starting from $\frac{|(2)|}{i+1}$.

$$
\begin{aligned}
\mathbb{L}_{i}\left|z_{i}^{2}\right\rangle & =\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right) \cdot z_{i}^{2}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(z_{i+1}^{2}-z_{i}^{2}\right) \\
& =z_{i+1}^{2}+(1-t) z_{i} z_{i+1}-t z_{i}^{2}
\end{aligned}
$$

mASEP on the segment: Something wrong...

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in \mathbb{A}} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

- \mathbb{L}_{i} acts on polynomials faithfully for $r=1$.
- For $r \geqslant 2$, consider the local dynamics starting from $\frac{|(2)|}{i+1}$.

$$
\begin{aligned}
\mathbb{L}_{i}\left|z_{i}^{2}\right\rangle & =\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right) \cdot z_{i}^{2}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(z_{i+1}^{2}-z_{i}^{2}\right) \\
& =z_{i+1}^{2}+(1-t) z_{i} z_{i+1}-t z_{i}^{2}
\end{aligned}
$$

mASEP on the segment: Something wrong...

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in \mathbb{A}} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

- \mathbb{L}_{i} acts on polynomials faithfully for $r=1$.
- Conclusion: the basis $\left\{|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}\right\}$ is not a good basis to work with.

mASEP on the segment: Something wrong...

Define $\mathbb{L}_{i}=\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(s_{i}-1\right)$, where s_{i} acts on polynomials by $z_{i} \leftrightarrow z_{i+1}$.
Prop. 2.1 : Let $|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}$. Then, $\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in A} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle$.

- \mathbb{L}_{i} acts on polynomials faithfully for $r=1$.
- Conclusion: the basis $\left\{|\nu\rangle=\prod_{i=1}^{n} z_{i}^{\nu_{i}}\right\}$ is not a good basis to work with.
- We look for a basis of polynomials $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ such that

$$
\begin{equation*}
\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in A} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle, \quad \forall \nu \tag{Adm}
\end{equation*}
$$

We say that $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ is admissible.

- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

mASEP on the segment: Hecke algebra

- Type A_{n-1} Hecke algebra with generators $\left\{T_{i}\right\}_{1 \leqslant i \leqslant n-1}$ and relations,

$$
\begin{array}{rlrl}
\left(T_{i}-t\right)\left(T_{i}+1\right) & =0, & \text { (quaratic relation) } \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, & \text { (braid relation) } \\
T_{i} T_{j} & =T_{j} T_{i}, \quad \forall i, j,|i-j|>1 . & & \text { (commutativity) }
\end{array}
$$

- Generators and inverses can be realized as operators on the space of polynomials $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$,

$$
\left\{\begin{aligned}
T_{i} & =t-\left(\frac{t z_{i}-z_{i+1}}{z_{i}-z_{i+1}}\right)\left(1-s_{i}\right), \quad\left(\Rightarrow \mathbb{L}_{i}=T_{i}-t\right), \\
T_{i}^{-1} & =t^{-1}-t^{-1}\left(\frac{t z_{i} i z_{i+1}}{z_{i}-z_{i+1}}\right)\left(1-s_{i}\right) .
\end{aligned}\right.
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s i \nu}, & \text { if } \nu_{i}>\nu_{i+1}, \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1},\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s i \nu}, & \text { if } \nu_{i}>\nu_{i+1} \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1},\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0,(t K Z)$ gives,

$$
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} \quad \text { if } \nu_{i}<\nu_{i+1}
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1}, \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1},\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0$, (tKZ) gives,

$$
\begin{array}{cc}
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} & \text { if } \nu_{i}<\nu_{i+1} . \\
\left(s_{i} \nu\right)_{i}>\left(s_{i} \nu\right)_{i+1} \Longrightarrow T_{i} f_{s_{i} \nu}=f_{\nu} \Longrightarrow \quad T_{i}^{2} \quad f_{s_{i} \nu}=T_{i} f_{\nu}
\end{array}
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1}, \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1},\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0$, (tKZ) gives,

$$
\begin{array}{cc}
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} & \text { if } \nu_{i}<\nu_{i+1} . \\
\left(s_{i} \nu\right)_{i}>\left(s_{i} \nu\right)_{i+1} \Longrightarrow T_{i} f_{s_{i} \nu}=f_{\nu} \Longrightarrow \underbrace{T_{i}^{2}}_{(t-1) T_{i}+t} f_{s_{i} \nu}=T_{i} f_{\nu}
\end{array}
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1}, \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1},\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0$, (tKZ) gives,

$$
\begin{array}{cc}
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} & \text { if } \nu_{i}<\nu_{i+1} . \\
\left(s_{i} \nu\right)_{i}>\left(s_{i} \nu\right)_{i+1} \Longrightarrow T_{i} f_{s_{i} \nu}=f_{\nu} \Longrightarrow \underbrace{T_{i}^{2}}_{(t-1) T_{i}+t} f_{s_{i} \nu}=T_{i} f_{\nu} \\
\Longrightarrow(t-1) f_{\nu}+t f_{s_{i} \nu}=T_{i} f_{\nu} .
\end{array}
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1} \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1}\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0,(t K Z)$ gives,

$$
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} \quad \text { if } \nu_{i}<\nu_{i+1}
$$

$$
\mathbb{L}_{i} f_{\nu}= \begin{cases}f_{s_{i}, \nu}-t f_{\nu}, & \text { if } \nu_{i}>\nu_{i+1} \\ 0, & \text { if } \nu_{i}=\nu_{i+1} \\ t f_{s_{i} \nu}-f_{\nu}, & \text { if } \nu_{i}<\nu_{i+1}\end{cases}
$$

mASEP on the segment: tKZ equation

- Consider a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
- We say that $\left\{f_{\nu}(z)\right\}$ is a solution to the ASEP exchange relations if

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1} \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1}\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

- Using the quadratic relation $T_{i}^{2}+(1-t) T_{i}-t=0$, (tKZ) gives,

$$
T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu} \quad \text { if } \nu_{i}<\nu_{i+1}
$$

$$
\mathbb{L}_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}-t f_{\nu}, & \text { if } \nu_{i}>\nu_{i+1} \\ 0, & \text { if } \nu_{i}=\nu_{i+1} \\ t f_{s_{i} \nu}-f_{\nu}, & \text { if } \nu_{i}<\nu_{i+1}\end{cases}
$$

$\rightsquigarrow(A d m)$ is satisfied.

mASEP on the segment: tKZ equation

- Given a family of polynomials $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.

$$
T_{i} f_{\nu}= \begin{cases}f_{s_{i} \nu}, & \text { if } \nu_{i}>\nu_{i+1} \tag{tKZ}\\ t f_{\nu}, & \text { if } \nu_{i}=\nu_{i+1}\end{cases}
$$

for all ν and $1 \leqslant i \leqslant n-1$.

\Downarrow

$$
\mathbb{L}_{i}|\nu\rangle=\sum_{\nu^{\prime} \in A} \ell_{i}\left(\nu^{\prime}, \nu\right)\left|\nu^{\prime}\right\rangle, \quad \forall \nu
$$

(Adm)

- Look for $\left\{f_{\nu}(z): \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)\right\}$ satisfying tKZ.

From tKZ to duality

Prop. 3.2: If $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ satisfies (tKZ), then the function $\Psi(\nu, \mu)=\delta_{\nu, \mu}$ is a local mASEP duality function. In other words,

$$
\mathbb{L}_{i}|\Psi\rangle=\mathbb{M}_{i}|\Psi\rangle, \quad 1 \leqslant i \leqslant n-1,
$$

where $|\Psi\rangle=\sum_{\nu} \sum_{\mu} \Psi(\nu, \mu) f_{\nu}(z)|\mu\rangle=\sum_{\mu} f_{\mu}(z)|\mu\rangle$.

From tKZ to duality

Prop. 3.2: If $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ satisfies (tKZ), then the function $\Psi(\nu, \mu)=\delta_{\nu, \mu}$ is a local mASEP duality function. In other words,

$$
\mathbb{L}_{i}|\Psi\rangle=\mathbb{M}_{i}|\Psi\rangle, \quad 1 \leqslant i \leqslant n-1,
$$

where $|\Psi\rangle=\sum_{\nu} \sum_{\mu} \Psi(\nu, \mu) f_{\nu}(z)|\mu\rangle=\sum_{\mu} f_{\mu}(z)|\mu\rangle$.

- Proof by direct computation.

From tKZ to duality

Prop. 3.2: If $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ satisfies (tKZ), then the function $\Psi(\nu, \mu)=\delta_{\nu, \mu}$ is a local mASEP duality function. In other words,

$$
\mathbb{L}_{i}|\Psi\rangle=\mathbb{M}_{i}|\Psi\rangle, \quad 1 \leqslant i \leqslant n-1,
$$

where $|\Psi\rangle=\sum_{\nu} \sum_{\mu} \Psi(\nu, \mu) f_{\nu}(z)|\mu\rangle=\sum_{\mu} f_{\mu}(z)|\mu\rangle$.

- Proof by direct computation.
- The trivial (diagonal) duality function is not interesting.

From tKZ to duality

Prop. 3.2: If $\left\{|\nu\rangle=f_{\nu}(z)\right\}$ satisfies (tKZ), then the function $\Psi(\nu, \mu)=\delta_{\nu, \mu}$ is a local mASEP duality function. In other words,

$$
\mathbb{L}_{i}|\Psi\rangle=\mathbb{M}_{i}|\Psi\rangle, \quad 1 \leqslant i \leqslant n-1,
$$

where $|\Psi\rangle=\sum_{\nu} \sum_{\mu} \Psi(\nu, \mu) f_{\nu}(z)|\mu\rangle=\sum_{\mu} f_{\mu}(z)|\mu\rangle$.

- Proof by direct computation.
- The trivial (diagonal) duality function is not interesting.
- Find a particular family of polynomials $\left\{f_{\nu}(z)\right\}$ satisfying (tKZ) and construct a non-trivial duality function.
- Key idea: construct functions $\left\{f_{\nu}(z)\right\}$ depending on additional parameters t and q and extract certain coefficients.
- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

Non-symmetric Macdonald Polynomials: Compositions

- A composition μ is an n-tuple of non-negative integers $\left(\mu_{1}, \ldots, \mu_{n}\right)$.

Non-symmetric Macdonald Polynomials: Compositions

- A composition μ is an n-tuple of non-negative integers $\left(\mu_{1}, \ldots, \mu_{n}\right)$.
- A partition λ is a composition s.t. $\lambda_{1} \geqslant \ldots \geqslant \lambda_{n} \geqslant 0$.
- An anti-partition δ is a composition s.t. $0 \leqslant \delta_{1} \leqslant \cdots \leqslant \delta_{n}$.

Non-symmetric Macdonald Polynomials: Compositions

- A composition μ is an n-tuple of non-negative integers $\left(\mu_{1}, \ldots, \mu_{n}\right)$.
- A partition λ is a composition s.t. $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.
- An anti-partition δ is a composition s.t. $0 \leqslant \delta_{1} \leqslant \cdots \leqslant \delta_{n}$.
- For a given composition μ, write μ^{+}and μ^{-}its unique partition / anti-partition obtained by permutation $\mu . \rightsquigarrow$ Example: $(1,0,2)^{+}=(2,1,0)$.

Non-symmetric Macdonald Polynomials: Compositions

\rightarrow A composition μ is an n-tuple of non-negative integers $\left(\mu_{1}, \ldots, \mu_{n}\right)$.

- A partition λ is a composition s.t. $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.
- An anti-partition δ is a composition s.t. $0 \leqslant \delta_{1} \leqslant \cdots \leqslant \delta_{n}$.
\rightarrow For a given composition μ, write μ^{+}and μ^{-}its unique partition / anti-partition obtained by permutation $\mu . \rightsquigarrow$ Example: $(1,0,2)^{+}=(2,1,0)$.
- Given two compositions μ and ν, define two orders:

$$
\begin{aligned}
& \mu \geqslant \nu \Longleftrightarrow \sum_{i=1}^{j} \mu_{i} \geqslant \sum_{i=1}^{j} \nu_{i}, \quad \forall 1 \leqslant j \leqslant n . \\
& \mu \succ \nu \Longleftrightarrow \mu^{+}>\nu^{+} \text {or } \mu^{+}=\nu^{+}, \mu>\nu .
\end{aligned}
$$

Non-symmetric Macdonald Polynomials: Compositions

- A composition μ is an n-tuple of non-negative integers $\left(\mu_{1}, \ldots, \mu_{n}\right)$.
- A partition λ is a composition s.t. $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.
\rightarrow An anti-partition δ is a composition s.t. $0 \leqslant \delta_{1} \leqslant \cdots \leqslant \delta_{n}$.
- For a given composition μ, write μ^{+}and μ^{-}its unique partition / anti-partition obtained by permutation $\mu . \rightsquigarrow$ Example: $(1,0,2)^{+}=(2,1,0)$.
- Given two compositions μ and ν, define two orders:

$$
\begin{aligned}
& \mu \geqslant \nu \Longleftrightarrow \sum_{i=1}^{j} \mu_{i} \geqslant \sum_{i=1}^{j} \nu_{i}, \quad \forall 1 \leqslant j \leqslant n . \\
& \mu \succ \nu \Longleftrightarrow \mu^{+}>\nu^{+} \text {or } \mu^{+}=\nu^{+}, \mu>\nu .
\end{aligned}
$$

- Example: $(0,0) \prec(0,1) \prec(1,0) \prec(1,1) \prec(0,2) \prec(2,0)$.
- It is not a total order: $(2,2) \nprec(3,0)$ and $(3,0) \nprec(2,2)$

Non-symmetric Macdonald Polynomials: Compositions
For a composition μ, its composition sector $\sigma(\mu)$ is defined by

$$
\sigma(\mu):=\left\{\nu \mid \mu^{+}=\nu^{+}\right\}=S_{n} \cdot \mu .
$$

Non-symmetric Macdonald Polynomials: Compositions

For a composition μ, its composition sector $\sigma(\mu)$ is defined by

$$
\sigma(\mu):=\left\{\nu \mid \mu^{+}=\nu^{+}\right\}=S_{n} \cdot \mu .
$$

Example: $n=3$ with $\mu=(0,1,2)$.

$$
(0,1,2)
$$

$(0,2,1)$
$(2,0,1)$
$(1,2,0)$
$(2,1,0)$

Non-symmetric Macdonald Polynomials: Compositions

For a composition μ, its composition sector $\sigma(\mu)$ is defined by

$$
\sigma(\mu):=\left\{\nu \mid \mu^{+}=\nu^{+}\right\}=S_{n} \cdot \mu .
$$

Example: $n=3$ with $\mu=(0,1,2)$.

$$
(0,1,2)
$$

Non-symmetric Macdonald Polynomials: Compositions

For a composition μ, its composition sector $\sigma(\mu)$ is defined by

$$
\sigma(\mu):=\left\{\nu \mid \mu^{+}=\nu^{+}\right\}=S_{n} \cdot \mu .
$$

Example: $n=3$ with $\mu=(0,1,2)$.

Non-symmetric Macdonald Polynomials: Definition

- Multi-variate polynomial ring: $\mathbb{C}_{q, t}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}(q, t)\left[z_{1}, \ldots, z_{n}\right]$ where t is the rate of ASEP and q is an additional parameter.

Non-symmetric Macdonald Polynomials: Definition

- Multi-variate polynomial ring: $\mathbb{C}_{q, t}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}(q, t)\left[z_{1}, \ldots, z_{n}\right]$ where t is the rate of ASEP and q is an additional parameter.
- Consider the Hecke algebra of type A_{n-1} as before. Define

$$
(\omega g)\left(z_{1}, \ldots, z_{n}\right)=g\left(q z_{n}, z_{1}, \ldots, z_{n-1}\right)
$$

Non-symmetric Macdonald Polynomials: Definition

- Multi-variate polynomial ring: $\mathbb{C}_{q, t}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}(q, t)\left[z_{1}, \ldots, z_{n}\right]$ where t is the rate of ASEP and q is an additional parameter.
- Consider the Hecke algebra of type A_{n-1} as before. Define

$$
(\omega g)\left(z_{1}, \ldots, z_{n}\right)=g\left(q z_{n}, z_{1}, \ldots, z_{n-1}\right)
$$

\rightarrow Define the Cherednik-Dunkl operators $Y_{i}\left[\right.$ Che91] ${ }^{1}\left[\right.$ Che95] ${ }^{2}$,

$$
Y_{i}=T_{i} \ldots T_{n-1} \omega T_{1}^{-1} \ldots T_{i-1}^{-1}, \quad 1 \leqslant i \leqslant n .
$$

[^3]
Non-symmetric Macdonald Polynomials: Definition

- Multi-variate polynomial ring: $\mathbb{C}_{q, t}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}(q, t)\left[z_{1}, \ldots, z_{n}\right]$ where t is the rate of ASEP and q is an additional parameter.
- Consider the Hecke algebra of type A_{n-1} as before. Define

$$
(\omega g)\left(z_{1}, \ldots, z_{n}\right)=g\left(q z_{n}, z_{1}, \ldots, z_{n-1}\right)
$$

- Define the Cherednik-Dunkl operators $Y_{i}\left[\right.$ Che91] ${ }^{1}$ [Che95] ${ }^{2}$,

$$
Y_{i}=T_{i} \ldots T_{n-1} \omega T_{1}^{-1} \ldots T_{i-1}^{-1}, \quad 1 \leqslant i \leqslant n .
$$

Fact: the operators $\left(Y_{i}\right)$ commute, so can be jointly diagonalized.

[^4]
Non-symmetric Macdonald Polynomials: Definition

- Multi-variate polynomial ring: $\mathbb{C}_{q, t}\left[z_{1}, \ldots, z_{n}\right]=\mathbb{C}(q, t)\left[z_{1}, \ldots, z_{n}\right]$ where t is the rate of ASEP and q is an additional parameter.
- Consider the Hecke algebra of type A_{n-1} as before. Define

$$
(\omega g)\left(z_{1}, \ldots, z_{n}\right)=g\left(q z_{n}, z_{1}, \ldots, z_{n-1}\right) .
$$

\rightarrow Define the Cherednik-Dunkl operators $Y_{i}\left[\right.$ Che91] ${ }^{1}\left[\right.$ Che95] ${ }^{2}$,

$$
Y_{i}=T_{i} \ldots T_{n-1} \omega T_{1}^{-1} \ldots T_{i-1}^{-1}, \quad 1 \leqslant i \leqslant n .
$$

- Fact: the operators $\left(Y_{i}\right)$ commute, so can be jointly diagonalized.
- Non-symmetric Macdonald Polynomials (NSMP) are defined as "normalized" eigenfunctions of these operators.
- NSMP are indexed by compositions $\mu \in \mathbb{Z}_{\geqslant 0}^{n}$.

[^5]
Non-symmetric Macdonald Polynomials: Properties

- The change of basis w.r.t. the canonical basis is triangular:

$$
E_{\mu}=z^{\mu}+\sum_{\nu \prec \mu} c_{\mu, \nu}(q, t) z^{\nu}, \quad c_{\mu, \nu}(q, t) \in \mathbb{Q}(q, t) .
$$

- Eigenvalues are given by, for all $1 \leqslant i \leqslant n$,

$$
\begin{aligned}
Y_{i} E_{\mu} & =y_{i}(\mu ; q, t) E_{\mu}, \\
y_{i}(\mu ; q, t) & =q^{\mu_{i}} t^{\rho(\mu)_{i}+n-i+1}, \quad \rho(\mu)=-w_{\mu} \cdot(1,2, \ldots, n),
\end{aligned}
$$

where $w_{\mu} \in S_{n}$ is the permutation with minimal length s.t. $\mu=w_{\mu} \cdot \mu^{+}$.

- Let μ be a composition such that $\mu_{i}<\mu_{i+1}$. Then

$$
E_{s_{i} \mu}=t^{-1}\left(T_{i}+\frac{1-t}{1-y_{i+1}(\mu) / y_{i}(\mu)}\right) E_{\mu} .
$$

Non-symmetric Macdonald Polynomials: Examples

- Example for $n=2$.

$E_{(0,0)}$	$=1$		
$E_{(0,1)}$	$=$	z_{2}	
$E_{(1,0)}$	$=$	z_{1}	$+\left(\frac{1-t}{1-q t}\right) z_{2}$
$E_{(1,1)}$	$=$	$z_{1} z_{2}$	$+z_{2}^{2}$
$E_{(0,2)}$	$=$	$\left(\frac{q(1-t)}{1-q t}\right) z_{1} z_{2}$	$+\left(\frac{1-t}{1-q^{2} t}\right) z_{2}^{2}$
$E_{(2,0)}$	$=$	$z_{1}^{2}+\left(\frac{q(1-t)^{2}}{\left(1-q^{2} t\right)(1-q t)}+\frac{1-t}{1-q t}\right) z_{1} z_{2}$	$+($

$>(0,0) \prec(0,1) \prec(1,0) \prec(1,1) \prec(0,2) \prec(2,0)$.

- The order is defined in [CGW20] ${ }^{1}$.

$$
\begin{aligned}
& \mu \geqslant \nu \Longleftrightarrow \sum_{i=1}^{j} \mu_{i} \geqslant \sum_{i=1}^{j} \nu_{i}, \quad \forall 1 \leqslant j \leqslant n . \\
& \mu \succ \nu \Longleftrightarrow \mu^{+}>\nu^{+} \text {or } \mu^{+}=\nu^{+}, \mu>\nu .
\end{aligned}
$$

[^6]
Non-symmetric Macdonald Polynomials: Examples

- Example for $n=2$.

$E_{(0,0)}$	$=1$		
$E_{(0,1)}$	$=$	z_{2}	
$E_{(1,0)}$	$=$	z_{1}	$+\left(\frac{1-t}{1-q t}\right) z_{2}$
$E_{(1,1)}$	$=$	$z_{1} z_{2}$	$+z_{2}^{2}$
$E_{(0,2)}$	$=$	$\left(\frac{q(1-t)}{1-q t}\right) z_{1} z_{2}$	$+\left(\frac{1-t}{1-q^{2} t}\right) z_{2}^{2}$
$E_{(2,0)}$	$=$	$z_{1}^{2}+\left(\frac{q(1-t)^{2}}{\left(1-q^{2} t\right)(1-q t)}+\frac{1-t}{1-q t}\right) z_{1} z_{2}$	$+($

$>(0,0) \prec(0,1) \prec(1,0) \prec(1,1) \prec(0,2) \prec(2,0)$.

- The order is defined in [CGW20] ${ }^{1}$.

$$
\begin{aligned}
& \mu \geqslant \nu \Longleftrightarrow \sum_{i=1}^{j} \mu_{i} \geqslant \sum_{i=1}^{j} \nu_{i}, \quad \forall 1 \leqslant j \leqslant n . \\
& \mu \succ \nu \Longleftrightarrow \mu^{+}>\nu^{+} \text {or } \mu^{+}=\nu^{+}, \mu>\nu .
\end{aligned}
$$

[^7]
Non-symmetric Macdonald Polynomials: Examples

- Example for $n=2$.

$E_{(0,0)}$	$=$	1	
$E_{(1,0)}$	$=$	z_{1}	$+z_{2}$
$E_{(0,1)}$	$=$	$\left(\frac{1-t}{1-q t}\right) z_{1}$	$z_{1} z_{2}$
$E_{(1,1)}$	$=$		$+\left(\frac{q(1-t)}{1-q t}\right)$
$z_{(2,0)} z_{2}$			
$E_{(0,2)}$	$=$	$\left(\frac{1-t}{1-q^{2} t}\right) z_{1}^{2}$	$+\left(\frac{q(1-t)^{2}}{\left(1-q^{2} t\right)(1-q t)}+\frac{1-t}{1-q t}\right)$

$>(0,0) \prec(1,0) \prec(0,1) \prec(1,1) \prec(2,0) \prec(0,2)$.

- The order is defined in [HHL08] ${ }^{1}$ also implemented in Sage.

$$
\begin{aligned}
& \mu \geqslant \nu \Longleftrightarrow \sum_{i=1}^{j} \mu_{n-i+1} \geqslant \sum_{i=1}^{j} \nu_{n-i+1}, \quad \forall 1 \leqslant j \leqslant n . \\
& \mu \succ \nu \Longleftrightarrow \mu^{+}>\nu^{+} \text {or } \mu^{+}=\nu^{+}, \mu>\nu .
\end{aligned}
$$

[^8]Conjecture 3.8 : Fix μ a composition. Let $m \in \mathbb{Q}_{>0}$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then, there exists a unique ν for which

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right] \propto E_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} E_{\nu}(z ; q, t)
$$

Non-symmetric Macdonald Polynomials: Examples

Conjecture 3.8: Fix μ a composition. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then, there exists a unique ν for which

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right] \propto E_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} E_{\nu}(z ; q, t)
$$

- One can check some examples using Sage.
- Authors of [CGW20] ${ }^{1}$ are able to show this conjecture only in some particular cases which is enough to construct some non-trivial duality functions.

[^9]
Non-symmetric Macdonald Polynomials: Examples

Prop. 3.5 : Define generating series

$$
Y(w)=\sum_{i=1}^{n} Y_{i} w^{i}, \quad y_{\mu}(w)=\sum_{i=1}^{n} y_{i}(\mu ; q, t) w^{i} .
$$

Then,

$$
E_{\mu}(z ; q, t)=\prod_{\nu \prec \mu} \frac{Y(w)-y_{\nu}(w)}{y_{\mu}(w)-y_{\nu}(w)} \cdot z^{\mu} .
$$

- This can be seen as "Lagrange interpolation".

Non-symmetric Macdonald Polynomials: Examples

Prop. 3.5 : Define generating series

$$
Y(w)=\sum_{i=1}^{n} Y_{i} w^{i}, \quad y_{\mu}(w)=\sum_{i=1}^{n} y_{i}(\mu ; q, t) w^{i} .
$$

Then,

$$
E_{\mu}(z ; q, t)=\prod_{\nu \prec \mu} \frac{Y(w)-y_{\nu}(w)}{y_{\mu}(w)-y_{\nu}(w)} \cdot z^{\mu} .
$$

- This can be seen as "Lagrange interpolation".

Proof: Use the following two properties:
$>\frac{Y(w)-y_{\nu}(w)}{y_{\mu}(w)-y_{\nu}(w)} \cdot E_{\nu}= \begin{cases}0, & \text { if } \nu \prec \mu, \\ E_{\mu}, & \text { if } \nu=\mu .\end{cases}$
$>E_{\mu}=z^{\mu}+\sum_{\nu \prec \mu} c_{\mu, \nu}(q, t) z^{\nu}$.

Non-symmetric Macdonald Polynomials: Coefficients

Prop. 3.6 : Fix μ a composition. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then,

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} \sum_{\nu \in \mathcal{E}_{\mu}} c_{\nu}(q, t) E_{\nu}(z ; q, t)
$$

where $\mathcal{E}_{\mu}=\left\{\nu: \nu \prec \mu, y_{\nu}(w)=y_{\mu}(w)\right.$ at $\left.q=t^{-m}\right\}$.

Non-symmetric Macdonald Polynomials: Coefficients

Prop. 3.6: Fix μ a composition. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then,

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} \sum_{\nu \in \mathcal{E}_{\mu}} c_{\nu}(q, t) E_{\nu}(z ; q, t)
$$

where $\mathcal{E}_{\mu}=\left\{\nu: \nu \prec \mu, y_{\nu}(w)=y_{\mu}(w)\right.$ at $\left.q=t^{-m}\right\}$.

Recall that eigenvalues are $y_{i}(\mu ; q, t)=q^{\mu_{i}} t^{\rho(\mu)_{i}+n-i+1}$.
Thus,

$$
\begin{aligned}
y_{\mu}(w)=y_{\nu}(w) & \Longleftrightarrow y_{i}(\mu)=y_{i}(\nu), & & \forall 1 \leqslant i \leqslant n, \\
& \Longleftrightarrow q^{\mu_{i}} t^{\rho(\mu)_{i}}=q^{\nu_{i}} t^{\rho(\nu)_{i}}, & & \forall 1 \leqslant i \leqslant n .
\end{aligned}
$$

Unique solution $\nu=\mu$ for generic q and t; more solutions at $q=t^{-m}$.

Non-symmetric Macdonald Polynomials: Coefficients

Prop. 3.6: Fix μ a composition. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then,

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} \sum_{\nu \in \mathcal{E}_{\mu}} c_{\nu}(q, t) E_{\nu}(z ; q, t),
$$

where $\mathcal{E}_{\mu}=\left\{\nu: \nu \prec \mu, y_{\nu}(w)=y_{\mu}(w)\right.$ at $\left.q=t^{-m}\right\}$.

Proof: Use "Lagrange interpolation",

$$
\prod_{\substack{\nu \nless \mu \\ \nu \notin \mathcal{E}_{\nu}}} \frac{Y(w)-y_{\nu}(w)}{y_{\mu}(w)-y_{\nu}(w)} \cdot z^{\mu}=E_{\mu}+\sum_{\nu \in \mathcal{E}_{\mu}} d_{\mu, \nu}(q, t) E_{\nu}
$$

By taking $\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p}$ on both sides, LHS $=0$ and RHS gives the proposition.

Non-symmetric Macdonald Polynomials: Coefficients

Prop. 3.7 : Assume that $p=\left|\mathcal{E}_{\mu}\right|$, then there exists a unique ν for which

$$
E_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} E_{\nu}(z ; q, t)
$$

is well-defined and $\operatorname{Coeff}_{p}\left[E_{\mu}, m\right] \propto E_{\nu}\left(z ; t^{-m}, t\right)$.

Non-symmetric Macdonald Polynomials: Coefficients

Prop. 3.7 : Assume that $p=\left|\mathcal{E}_{\mu}\right|$, then there exists a unique ν for which

$$
E_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} E_{\nu}(z ; q, t)
$$

is well-defined and $\operatorname{Coeff}_{p}\left[E_{\mu}, m\right] \propto E_{\nu}\left(z ; t^{-m}, t\right)$.

- Conjecture 3.8 is true with an additional condition $p=\left|\mathcal{E}_{\mu}\right|$.
- Proof uses "Lagrange interpolation" and by induction.
- The composition ν corresponds to the minimal composition in \mathcal{E}_{μ}.
- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

- Well-defined due to the Hecke algebra structure.
$>f_{\mu} \neq E_{\mu}$ in general: the recursion formula is different.

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

- Well-defined due to the Hecke algebra structure.
$>f_{\mu} \neq E_{\mu}$ in general: the recursion formula is different.

$$
\text { Recall that } E_{s_{i}, \mu}=t^{-1}\left(T_{i}+\frac{1-t}{1-y_{i+1}(\mu) / y_{i}(\mu)}\right) E_{\mu} \text { for } \mu_{i}<\mu_{i+1}
$$

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

- Well-defined due to the Hecke algebra structure.
- $f_{\mu} \neq E_{\mu}$ in general: the recursion formula is different.
- ASEP polynomials are triangular w.r.t. the canonical basis,

$$
f_{\mu}=z^{\mu}+\sum_{\nu \prec \mu} c_{\mu, \nu}(q, t) z^{\nu}
$$

and satisfies (tKZ).

$$
f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}}\left(q z_{n}, z_{1}, \ldots, z_{n-1} ; q, t\right)=q^{\mu_{n}} f_{\mu}(z ; q, t) .
$$

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

- Well-defined due to the Hecke algebra structure.
- $f_{\mu} \neq E_{\mu}$ in general: the recursion formula is different.
- ASEP polynomials are triangular w.r.t. the canonical basis,

$$
f_{\mu}=z^{\mu}+\sum_{\nu \prec \mu} c_{\mu, \nu}(q, t) z^{\nu}
$$

and satisfies (tKZ).

$$
\begin{equation*}
f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}}\left(q z_{n}, z_{1}, \ldots, z_{n-1} ; q, t\right)=q^{\mu_{n}} f_{\mu}(z ; q, t) . \tag{Cyclic-B.C.}
\end{equation*}
$$

- Above two properties uniquely define ASEP polynomials.

ASEP polynomials: Definition

- Another basis ASEP polynomials can be defined from NSMP,

$$
\begin{aligned}
f_{\delta}(z ; q, t) & =E_{\delta}(z ; q, t), & \forall \delta=\left(\delta_{1} \leqslant \ldots \leqslant \delta_{n}\right), \\
f_{s i \mu} & =T_{i}^{-1} f_{\mu}, & \mu_{i}<\mu_{i+1} .
\end{aligned}
$$

- Well-defined due to the Hecke algebra structure.
$>f_{\mu} \neq E_{\mu}$ in general: the recursion formula is different.
- ASEP polynomials are triangular w.r.t. the canonical basis,

$$
f_{\mu}=z^{\mu}+\sum_{\nu \prec \mu} c_{\mu, \nu}(q, t) z^{\nu}
$$

and satisfies (tKZ).

$$
\begin{equation*}
f_{\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}}\left(q z_{n}, z_{1}, \ldots, z_{n-1} ; q, t\right)=q^{\mu_{n}} f_{\mu}(z ; q, t) . \tag{Cyclic-B.C.}
\end{equation*}
$$

- Above two properties uniquely define ASEP polynomials.
- ASEP and NSMP are also related by a triangular change of basis.

ASEP polynomials: Definition

Prop. 3.10 : For any composition μ, the following expansions are unique,

$$
\begin{aligned}
E_{\mu}(z ; q, t) & =f_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} c_{\mu, \nu}(q, t) f_{\nu}(z ; q, t) ; \\
f_{\mu}(z ; q, t) & =E_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} d_{\mu, \nu}(q, t) E_{\nu}(z ; q, t) .
\end{aligned}
$$

ASEP polynomials: Definition

Prop. 3.10 : For any composition μ, the following expansions are unique,

$$
\begin{aligned}
E_{\mu}(z ; q, t) & =f_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} c_{\mu, \nu}(q, t) f_{\nu}(z ; q, t) ; \\
f_{\mu}(z ; q, t) & =E_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} d_{\mu, \nu}(q, t) E_{\nu}(z ; q, t) .
\end{aligned}
$$

Proof: For an anti-partition, $E_{\delta}=f_{\delta}$ so the proposition is true.

ASEP polynomials: Definition

Prop. 3.10 : For any composition μ, the following expansions are unique,

$$
\begin{aligned}
E_{\mu}(z ; q, t) & =f_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} c_{\mu, \nu}(q, t) f_{\nu}(z ; q, t) ; \\
f_{\mu}(z ; q, t) & =E_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} d_{\mu, \nu}(q, t) E_{\nu}(z ; q, t) .
\end{aligned}
$$

Proof: For an anti-partition, $E_{\delta}=f_{\delta}$ so the proposition is true. By induction, assume μ is s.t. the proposition holds with $\mu_{i}<\mu_{i+1}$,

$$
E_{s_{i}, \mu}=t^{-1}\left(T_{i}+\frac{1-t}{1-y_{i+1}(\mu) / y_{i}(\mu)}\right)\left(f_{\mu}+\sum_{\substack{\nu \in \sigma(\mu) \\ \nu \prec \mu}} c_{\mu, \nu}(q, t) f_{\nu}\right) .
$$

ASEP polynomials: Definition

Prop. 3.10 : For any composition μ, the following expansions are unique,

$$
\begin{aligned}
E_{\mu}(z ; q, t) & =f_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} c_{\mu, \nu}(q, t) f_{\nu}(z ; q, t) ; \\
f_{\mu}(z ; q, t) & =E_{\mu}(z ; q, t)+\sum_{\substack{\nu \in \sigma(\mu) \\
\nu<\mu}} d_{\mu, \nu}(q, t) E_{\nu}(z ; q, t) .
\end{aligned}
$$

Proof: For an anti-partition, $E_{\delta}=f_{\delta}$ so the proposition is true. By induction, assume μ is s.t. the proposition holds with $\mu_{i}<\mu_{i+1}$,

$$
E_{s_{i}, \mu}=t^{-1}\left(T_{i}+\frac{1-t}{1-y_{i+1}(\mu) / y_{i}(\mu)}\right)\left(f_{\mu}+\sum_{\substack{\nu \in \sigma(\mu) \\ \nu<\mu}} c_{\mu, \nu}(q, t) f_{\nu}\right) .
$$

- $T_{i} f_{\nu}=(t-1) f_{\nu}+t f_{s_{i} \nu}$;
- $\nu, s_{i} \nu \in \sigma(\mu)=\sigma\left(s_{i} \mu\right)$;
- $\left(\nu \prec \mu, \mu \prec s_{i} \mu\right) \Rightarrow \nu, s_{i} \nu \prec s_{i} \mu$.

ASEP polynomials: Definition

Theorem 3.11 : Fix an anti-partition δ. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$ such that
Conjecture 3.8 holds. Then, there exists a unique anti-partition ε

$$
f_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} f_{\nu}(z ; q, t)
$$

is well-defined for all $\nu \in \sigma(\varepsilon)$ and

$$
\operatorname{Coeff}_{p}\left[f_{\mu}, m\right]=\sum_{\nu \in \sigma(\varepsilon)} \Psi(\nu, \mu ; t) f_{\nu}\left(z ; t^{-m}, t\right)
$$

for all $\mu \in \sigma(\delta)$ and suitable coefficients $\psi(\nu, \mu ; t)$.

ASEP polynomials: Definition

Theorem 3.11 : Fix an anti-partition δ. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$ such that
Conjecture 3.8 holds. Then, there exists a unique anti-partition ε

$$
f_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} f_{\nu}(z ; q, t)
$$

is well-defined for all $\nu \in \sigma(\varepsilon)$ and

$$
\operatorname{Coeff}_{p}\left[f_{\mu}, m\right]=\sum_{\nu \in \sigma(\varepsilon)} \Psi(\nu, \mu ; t) f_{\nu}\left(z ; t^{-m}, t\right)
$$

for all $\mu \in \sigma(\delta)$ and suitable coefficients $\psi(\nu, \mu ; t)$.

Proof:

- The proof is based on Prop. 3.10.
$>$ Use the recurrence relation and the fact that T_{i} commutes with \lim.

ASEP polynomials: Definition

Conjecture 3.8: Fix μ a composition. Let $m \in \mathbb{Q}>0$ and $p \in \mathbb{N}$. If

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right]:=\lim _{q \rightarrow t^{-m}}\left(1-q t^{m}\right)^{p} E_{\mu}(z ; q, t)
$$

exists and is non-zero. Then, there exists a unique ν for which

$$
\operatorname{Coeff}_{p}\left[E_{\mu}, m\right] \propto E_{\nu}\left(z ; t^{-m}, t\right):=\lim _{q \rightarrow t^{-m}} E_{\nu}(z ; q, t)
$$

ASEP polynomials: Definition

Theorem 3.12: Keep the notations from Theorem 3.11. $\Psi(\nu, \mu ; t)$ defines a local duality function.

Proof: From Prop 3.2 (trivial duality function), the following holds

$$
\begin{equation*}
\mathbb{L}_{i}|\mathcal{I}\rangle=\mathbb{M}_{i}|\mathcal{I}\rangle, \quad 1 \leqslant i \leqslant n-1, \tag{1}
\end{equation*}
$$

where $|\mathcal{I}\rangle=\sum_{\mu} f_{\mu}(z ; q, t)|\mu\rangle$. Taking the coefficient,

$$
\left|\mathcal{I}_{p, m}\right\rangle:=\operatorname{Coeff}_{p}[|\mathcal{I}\rangle, m]=\sum_{\mu \in \sigma(\delta)} \sum_{\nu \in \sigma(\varepsilon)} \Psi(\nu, \mu ; t) f_{\nu}\left(z ; t^{-m}, t\right)|\mu\rangle
$$

also satisfies $\mathbb{L}_{i}\left|\mathcal{I}_{p, m}\right\rangle=\mathbb{M}_{i}\left|\mathcal{I}_{p, m}\right\rangle, \quad 1 \leqslant i \leqslant n-1$.

- The notion of the duality: operator / matrix formalism.
- Multi-species ASEP process.
- Hecke algebra, tKZ equation and trivial duality function.
- Non-symmetric Macdonald polynomials.
- ASEP polynomials: construction of non-trivial duality functions.
- Matrix product Ansatz and examples.

Matrix product Ansatz

- The coefficients $\Psi(\nu, \mu)$ are difficult to compute in general.

The matrix product Ansatz from [CGW15] ${ }^{1}$ is useful for ASEP polynomials.

Theorem : Fix $r \geqslant 1$. For a composition μ with largest part equal to r,

$$
\begin{equation*}
f_{\mu}(z ; q, t)=\Omega_{\mu}(q, t) \times \operatorname{Tr}\left(A_{\mu_{1}}\left(z_{1}\right) \ldots A_{\mu_{n}}\left(z_{n}\right) S\right) \tag{Mat-Ans}
\end{equation*}
$$

where $\left\{A_{i}(z)\right\}_{0 \leqslant i \leqslant r}$ and S are explicit matrices.

Proof: Translate (tKZ) and (Cyclic-B.C.) into matrices.

[^10]
References I

- Alexei Borodin, Ivan Corwin, Tomohiro Sasamoto, et al. "From duality to determinants for q-TASEP and ASEP". The Annals of Probability 42.6 (2014).
- Luigi Cantini, Jan de Gier, and Michael Wheeler "Matrix product formula for Macdonald polynomials". Journal of Physics A: Mathematical and Theoretical 48.38 (2015).
- Zeying Chen, Jan de Gier, and Michael Wheeler "Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation".

International Mathematics Research Notices 2020.19 (2020).

- Ivan Cherednik
"A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras".
Inventiones mathematicae 106.1 (1991).

References II

- Ivan Cherednik
"Non-symmetric Macdonald's polynomials".
arXiv preprint q-alg/9505029 (1995).
- James Haglund, Mark Haiman, and Nick Loehr
"A combinatorial formula for nonsymmetric Macdonald polynomials". American Journal of Mathematics 130.2 (2008).

[^0]: ${ }^{1}$ From duality to determinants for q-TASEP and ASEP (2014)

[^1]: ${ }^{1}$ From duality to determinants for q-TASEP and ASEP (2014)

[^2]: ${ }^{1}$ From duality to determinants for q-TASEP and ASEP (2014)
 ${ }^{2}$ Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation (2020)

[^3]: ${ }^{1}$ A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras (1991)
 ${ }^{2}$ Non-symmetric Macdonald's polynomials (1995)

[^4]: ${ }^{1}$ A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras (1991)
 ${ }^{2}$ Non-symmetric Macdonald's polynomials (1995)

[^5]: ${ }^{1}$ A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras (1991)
 ${ }^{2}$ Non-symmetric Macdonald's polynomials (1995)

[^6]: ${ }^{1}$ Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation (2020)

[^7]: ${ }^{1}$ Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation (2020)

[^8]: ${ }^{1}$ A combinatorial formula for nonsymmetric Macdonald polynomials (2008)

[^9]: ${ }^{1}$ Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation (2020)

[^10]: ${ }^{1}$ Matrix product formula for Macdonald polynomials (2015)

