3 Flagmatic package

Emil Vaughan’s Flagmatic-2.0 can be found here: www.flagmatic.org and the older version
(Flagmatic-1.5) here: http://www.maths.qmul.ac.uk/~ev/flagmatic/. The latter site con-
tains an overview of results obtained or re-obtained with Flagmatic package).

For updated setup.py file to run on top of Sage-6.4.x, clone Flagmatic-2.0 from https:
//github.com/jsliacan/flagmatic-2.0.git. Signatures of several functions that Flagmatic-
2.0 uses changed in Sage over time (e.g. method automorphism group in Graph class does
not take translation as argument anymore, see http://trac.sagemath.org/ticket/14319)
Those changes that were discovered were remedied in Flagmatic-2.0 residing in the referenced
Github repository.

There exists an experimental version of Flagmatic, called Flagmatic-dev and you can have
it from https://github.com/jsliacan/flagmatic-dev.git. This is mainly the version of
Flagmatic that is used throughout this text. It operates in three modes (described later in this
section):

e Plain mode
e Optimization mode

e Feasibility mode.

3.1 Install and run

To install Flagmatic-dev, for instance, follow the instructions in the README.md file (short and
brief) or the steps outlined below. Flagmatic-dev and Flagmatic-2.0 is known to work on Mac
OS X Yosemite, and Ubuntu 14.04 running Sage-6.4 (as of May 7, 2015).

1. Install Sage-6.4.x. You can download source or binaries from http://www.sagemath.
org/. Installing from source will take hours.

2. Install CSDP solver.
$ sage -i csdp

3. Download Flagmatic-dev and navigate to its directory
$ git clone https://github.com/jsliacan/flagmatic-dev.git
$ cd flagmatic-dev

4. Open install-dev-flagmatic and change lines 2 and 3 to reflect your directory layout.
Save and close. The file looks like this:

17

www.flagmatic.org
http://www.maths.qmul.ac.uk/~ev/flagmatic/
https://github.com/jsliacan/flagmatic-2.0.git
https://github.com/jsliacan/flagmatic-2.0.git
http://trac.sagemath.org/ticket/14319
https://github.com/jsliacan/flagmatic-dev.git
http://www.sagemath.org/
http://www.sagemath.org/

Listing 3.1: Contents of install-flagmatic-dev file.

#!/bin/bash
FLAGMATIC_PKG=/Users/srobik/Github/flagmatic-dev/pkg/
SAGE_SITE_PKGS=/Users/srobik/sage/sage/local/lib/python2.7/site-packages/

remove old flagmatic versions

cd $SAGE_SITE_PKGS

eval "sudo rm Flagmatic*.egg-info"
eval "sudo rm -rf flagmatic"

© 00 O Ui WN -~

Ju—
o

install new flagmatic version
cd $FLAGMATIC_PKG
eval "sudo -E sage -python setup.py install"

[y
—_

—
[\

5. Copy the installation script to /usr/local/bin and add permissions to execute.
$ cp install-dev-flagmatic /usr/local/bin
$ sudo chmod+x /usr/local/bin/install-dev-flagmatic

6. Install Flagmatic.
$ install-dev-flagmatic

7. Reload your Terminal (on Mac, cmd+R is enough).

8. Run sage (assuming it is on your PATH). You should see the current version of Sage.
$ sage:

9. Load Flagmatic package.

sage: from flagmatic.all import *
10. You can now execute Flagmatic commands. Try the following example.

Listing 3.2: Asymptotic version of Mantel’s Theorem: 7(K3) = 1/2.

= GraphProblem (3, forbid="3:121323")
.solve_sdp(show_output=True)

.graphs

.flags

.types

DU W N
‘s o oo oo

The last line is a standard way to ask for information about a function, variable, class, or any
other object. Sage will return the doc string associated with this object.

3.2 Plain mode

For simplicity, we write all expressions asymptotically, i.e. H will stand for its own density in
some large graph G. The plain mode is the implementation of the plain flag algebras method.
The structure of the problem is the following: minimise (or maximise) a linear combination of
subgraph densities in a large graph not containing members of a family F as induced subgraphs.
In other words, let D* = a1 Dy + ...+ aip Dy be the quantum graph whose density we intend to
maximize — density quantum graph, and let F = {F,..., Fy}. Let Hy be a family of F-free
graphs on N vertices, where NN is chosen so that max;<;< |V(D;)] < N. The semidefinite
programming problem looks as follows.

18

mind :

D*+) [p.Q-pf], <6
T€T
Q. =0, VYreT

0>0

Of course, all graph densities above are first converted to the linear combinations of graphs in
Hy. In short, the plain mode in Flagmatic allows us to ask for an upper bound on 7p«(F).
3.2.1 Mantel’s theorem

As usually, let us first do the easiest example. Recall that the asymptotic version of Mantel’s
theorem says that the edge density of a triangle-free graph is at most 1/2, i.e. D* = K3 and
F = {K3}. In Flagmatic, this looks as below.

Listing 3.3: Bounding asymptotic Turan density of Kj.

GraphProblem (3, forbid="3:121323")
GraphBlowupConstruction("2:12")
.set_extremal_construction(c)
.solve_sdp(solver="csdp")
.make_exact ()

.write_certificate ("mantel.cert")

e Be B e Bl o BN e Mo]

3.2.2 Minimizing monochromatic 4-cliques in a 2-colored clique

Let ¢, be a edge-2-coloring of a complete graph K,, on n vertices. Let k(cy,) be the number of
monochromatic complete graphs K; on t vertices in ¢,. Define

mine,, ki(c,)

— 1‘ .1
T (3.1)
Ramsey’s theorem implies that ZiRenflen) jq iy [0,1] and it can be shown that it is a non-

t
decreasing sequence in n. Thus the limit in (3.1) exits.

Theorem 2 (Monochromatic K;’s in 2-colored complete graph [Spel2]).

1
> ———— = 0.0287473624294971
my > 317858 0.028747362429497

Proof in Flagmatic. Stating the problem in terms of induced densities yields the following

minex - 7=(n, ()
m; = lim KatKq 0

ST

where minex ., +74(n, () is the minimum, over all n-vertex graphs with no forbidden subgraphs,
of the number of 4-sets that induce a K or its complement in that n-vertex graph. In Flagmatic,
the code looks as follows.

Listing 3.4: Bounding asymptotic density of monochromatic K4’s in a 2-coloring of a complete
graph.

p = GraphProblem(8, density=[("4:",1),("4:121314232434", 1)], minimize=True)
p.solve_sdp(solver="csdp")

p.make_exact ()

p.write_certificate("monocolor.cert")

19

The above script yields a bound as good as the one in [Spel2]. However, the set of admissi-
ble graphs on 8 vertices makes the computations long. A bound of m4 > 30025/1048576 =
0.02863407135 can be obtained by running the computations on 7 vertices. The bound is not
sharp and the make_exact method has no further information to use. Hence rounding changes
the bound somewhat. O

3.2.3 Forbidding a tetrahedron and 4-set spanning exactly one 3-edge

The original tetrahedron problem is the Turan problem about forbidding K3, see the statement
in Conjecture 1. Many non-isomorphic extremal configurations are known by now — for overview
see e.g. [Keell]. The tetrahedron problem is the smallest from the family of Turdn hypergraph
problems.

Conjecture 1 (Turan).

7(Ky) = 5/9

Currently, the best bound is due to Razborov [Raz10]. He also pointed out that the extremal
construction due to Turdn (the corresponding Turdn 3-graph) is the only extremal construction
from among the known ones which contains no I (a 3-graph on four vertices and exactly one
3-edge). Razborov then proved the following result.

Theorem 3 (Razborov [Raz10]).
(K4, If) =5/9

As for the extremal Turdn graph, divide the vertices into three parts of equal sizes (as equal
as possible). When these parts are arranged in a cyclic order, put in all edges of the following
two types. The first type has one vertex in each part. The second type has two vertices in one
part, and the remaining vertex in the next part in clockwise direction. Clearly, the edge count

in this extremal construction is 3 - [% : ("43)} + (%)3 = 5"35;46"2 = 23 — O(n?). So we know

about the normalized Turdn numbers that 7(n, K4) > 5/9 — O(1/n). Hence w(K4) > 5/9.

The Flagmatic code that proves the asymptotic upper bound of 5/9 is below.

Listing 3.5: Bounding asymptotic Turdn density of {K3, I} }.

ThreeGraphProblem (7, forbid_induced=["4:123124134234", "4:123"])
ThreeGraphBlowupConstruction("3:112223331123")
.set_extremal_construction(c)

.solve_sdp(solver="csdp")

.make_exact ()

.write_certificate("not-tetrahedron.cert")

e lle Bl o Bl o BN el e]

3.3 Optimization mode

As in the sections above, let n be the order of admissible graphs in H,. Assume we want to
maximise a linear combination of graphs, say D* = a1 D1 + ...a;Dy. Assume further that we
want to maximise D* subject to constraints, each of which can be expressed as a linear inequality
of graph densities (i.e. quantum graph). We call each such inequality an assumption. In other
words, let G = >"7 | d;G; be a quantum graph and d € R. Then G > d is an assumption.

20

For instance, imagine that we want to maximize the number of triangles in a graph that
has a density of 4-vertex sets spanning exactly two edges at least d. That is, we want max K3
such that { ! = Ky U K9 > d for some fixed d. Here H* = K3 and the assumption in this case
is the inequality { { > d. Let #y be the family of N-vertex admissible graphs — they are like a
currency, all computations are done in terms of their densities. Finally, let T be the set of all
types used in flag algebra computations. Then in general, the assumption is of the form

S= Y bwW=b b,eR
WeF CFo
|F'|<o0
Let | = minyer{N — |V(W)|} (N is always chosen so that it is not smaller than any of
the graphs in D* or assumptions). Let also M = |F’|. Then the problem description looks like
this:

mind :
A Iy
D* + |l(51 —b1) ZC}Fz'lH ot |l(5M - bM)ZCzMFiM]] + > [p.@Q-pf], <9
i=1 o1 i=1 oy TET
Q. =0, VYreT
>0, Vi=1,...,,
Ci = 5 VZ:1,7ZM
)

In Flagmatic-dev, you can express your wish to use optimization mode by passing the
argument mode="optimization" to the Problem class. Doing so will allow you to use the
add_assumption method of the Problem class. See the examples below for demonstration of
usage.

Assume that the quantum assumption graph is a linear combination of k& simple graph flags.
Then the signature of add_assumption is

add_assumption(7, [(G1,c1),...,(G1,c1)],d, equality=False)

T is the graph-string representing the type-graph. The quantum assumption graph is a
linear combination of 7-flags — the restriction is that all graphs in the quantum assumption
graph must be over same typegraph (their labelled parts are labelled-isomorphic).

o [(G1,¢1),...,(Gk,c)] is the quantum assumption graph, a linear combination of 7-
flags (not necessarily of the same order).

e d is the RHS of the assumption which if of the form G = d or G > d for some d € [0, 1]
and G a quantum graph of 7-flags. It is permissible to enter d as a fraction, i.e. 1/8 is
correct syntax. Otherwise use decimal form, e.g. 0.125.

e equality=False is an argument which specifies whether the assumption is an equality
G = d or an inequality G > d. The latter is default, so equality needs to be explicitly
specified.

The user is allowed to enter as many assumptions as she requires by repeatedly calling the
add_assumption method.

21

DU W N

0~ Uk WN

3.3.1 Mantel’s theorem revisited

Notice the following fact: forbidding a graph F' and requiring that F' = 0 are asymptotically
the same constraints, despite one of them being exact and the other one asymptotic. We can
see this on an example of Mantel’s theorem. In Section 3.2 we used the following code to obtain
asymptotic version of Mantel’s theorem. Flagmatic’s answer follows.

Listing 3.6: Bounding asymptotic Turan density of K3. (plain mode)

= GraphProblem (3, forbid="3:121323")
= GraphBlowupConstruction("2:12")
.set_extremal_construction(c)
.solve_sdp(solver="csdp")
.make_exact ()

ol B BN e N o]

Listing 3.7: Output

Forbidding 3:121323 as a subgraph.
Generating graphs...

Generated 3 graphs.

Generating types and flags...

Generated 1 types of order 1, with [2] flags of order 2.
Computing products.

Writing SDP input file...

Running SDP solver...

Returncode is 0. Objective value is 0.50000001.
Checking numerical bound...

Bound of 1/2 appears to have been met.

The following 2 graphs appear to be sharp:
0.499999996063 : graph 0 (3:)
0.500000006567 : graph 2 (3:1213)

Type O (2 flags) blocks: [2]

Creating bases.

Transforming matrices.

Rounding matrices.

Constructing R matrix.

Constructing DR matrix.

DR matrix has rank 1.

A1l eigenvalues appear to be positive.
Bound of 1/2 attained by:

1/2 : graph 0 (3:)

1/2 : graph 2 (3:1213)

Diagonalizing.

Verifying.

Specifying the A-freeness through assumptions is demonstrated in the following flagmatic
script.

Listing 3.8: Bounding asymptotic Turdn density of K3. (optimization mode)

p = GraphProblem(3, mode="optimization")
p.add_assumption("0:", [("3:121323(0)", 1)], O, equality=True)
¢ = GraphBlowupConstruction("2:12")
p.set_extremal_construction(c)

p.solve_sdp(solver="csdp")

p.make_exact ()

Listing 3.9: Output

Generating graphs...

Generated 4 graphs.

Generating types and flags...

Generated 1 types of order 1, with [2] flags of order 2.
Computing products.

Added 1 quantum graphs.

Added 1 quantum graphs.

Determining which graphs appear in construction...

22

Density of construction is 1/2.

Found 1 zero eigenvectors for type O.
Writing SDP input file...

Running SDP solver...

Returncode is 0. Objective value is 0.5.
Checking numerical bound...

Bound of 1/2 appears to have been met.
The following 2 graphs appear to be sharp:
0.499999999032 : graph 0 (3:)
0.500000001613 : graph 2 (3:1213)

Type 0 (2 flags) blocks: [2]

Creating bases.

Transforming matrices.

Rounding matrices.

Constructing R matrix.

Constructing DR matrix.

DR matrix (density part) has rank 1.

DR matrix has rank 2.

A1l density coefficients are non-negative.
All eigenvalues appear to be positive.
Bound of 1/2 attained by:

1/2 : graph 0 (3:)

1/2 : graph 2 (3:1213)

Diagonalizing.

Verifying.

Notice how assumptions are specified. First, in line 1 of Listing 3.13, we set mode to "optimization".
This will allow us to use the method add_assumption in line 2 of the same script sample. In
our case, we don’t want our quantum assumption graph (&) to be labelled. So the typegraph

is on 0 vertices and has no edges (see line 2 of 3.13, "0:"). As already mentioned, the quantum
assumption graph is just 1 -4 We want the asymptotic density of & to be 0, so d = 0. Also,

we want it to be equal to 0, not greater of equal. So equality=True needs to be set.

3.3.2 Modification of Mantel’s theorem

Let us consider the following example. We would like to maximize the number of edges in a
A-free graph, in which additionally we require the density of % to be at most 2/3. As expected,
this forces the edge density to decrease.

Listing 3.10: Bounding asymptotic Turdn density of K3 given that Py < 2/3.

[y

p = GraphProblem(3, forbid="3:121323", mode="optimization")
p.add_assumption("0:", [("3:1223", -1)], -2/3)
p.solve_sdp(solver="csdp")

Listing 3.11: Output

H O ©OWO0 Utk W

— =

Forbidding 3:121323 as a subgraph.

Generating graphs...

Generated 3 graphs.

Generating types and flags...

Generated 1 types of order 1, with [2] flags of order 2.
Computing products.

Added 1 quantum graphs.

Writing SDP input file...

Running SDP solver...

Returncode is 0. Objective value is 0.47140453.
Checking numerical bound...

3.3.3 Soés problem

23

© 00U WN -

NN DN = = = = = e e e e
NH—R OO0 UkWwNnH+~-O

© 00~ U WN -

DN DN NN = = = = e e
B WNFEF OO U WN O

Listing 3.12: Sés problem

N = binomial (4,2)

def dens(pp, n, k):
return binomial(n,k)*pp~k*(1-pp)~(n-k)

sp = GraphProblem(4,
density=[("4:12132434(0)", -4),
("4:1434(0)", 1), ("4:1324(0)",
types=["2:","2:12"],
mode="optimization")
sp.add_assumption("0:", [("4:(0)", 1)], dens(1/2, N, 0),
sp.add_assumption("0:", [("4:12(0)", 1)], dems(1/2, N, 1) ,
sp.add_assumption("0:", [("4:1223(0)", 1), ("4:1234(0)", 1)
equality=True)
sp.add_assumption("0:", [("4:121314(0)", 1), ("4:122334(0)",

dens (1/2, N, 3), equality=True)

("4:12233124(0) ",

.,
-7,

equality=True)

equality=True)
], dens(1/2, N, 2),

1), ("4:122331(0)",

sp.add_assumption("0:", [("4:12233441(0)", 1), ("4:12233134(0)", 1)1, dens(1/2,
equality=True)

sp.add_assumption("0:", [("4:1223344113", 1)], dens(1/2, N, 5), equality=True)

sp.add_assumption("0:", [("4:122334411324", 1)], dens(1/2, N, 6), equality=True)

sp.solve_sdp(solver="csdp")

D1,

N,

4),

Listing 3.13: Output

Generating graphs...
Generated 11 graphs.
Generating types and flags...
Generated O types of order O,
Generated 2 types of order 2,
Computing products..

with [] flags of order 2.
with [4, 4] flags of order 3.

Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Added 1 quantum graphs.
Writing SDP input file...

Running SDP solver...
Returncode is 0. Objective value is 2.6474621e-10.
Checking numerical bound...

24

