Computer-assisted proofs for renormalisation fixed points

Andrew D Burbanks*

MIRaW Days 'Computation in Mathematics and Mathematics in Computation' Warwick Mathematics Institute University of Warwick, 11/03/2024

* School of Mathematics and Physics, University of Portsmouth, UK.

Introduction

Period-doubling Cascade

One-parameter families of unimodal maps. Prototype example,

$$f_{\mu}(x) = 1 - \mu |x|^d.$$

Critical point of degree *d* (local max) at x = 0. Orbit diagram (e.g., d = 2)

Universal Features

Feigenbaum (L), Cvitanović (R)

For degree d = 2 critical point: **universal** constants

 $\delta_2 := \lim_{n \to \infty} \frac{\mu_{n+1} - \mu_n}{\mu_{n+2} - \mu_{n+1}} = 4.669\,201\,609\,102\,990\,671\,\ldots,$

 $\alpha_2 = -2.502907875095892822283902873218...$

[Feigenbaum 1978; Coullet, Tresser 1978]

Renormalisation operator [Cvitanović-Feigenbaum]

$$Rg(x) = a^{-1}g(g(ax)),$$

where a := g(1), chosen to preserve the normalisation g(0) = 1.

(Main) Renormalisation Conjectures

There exists a nontrivial **hyperbolic renormalisation fixed point** g^* (with $\alpha = 1/g^*(1)$).

The spectrum of the linearisation $DR(g^*)$ of the operator has a single (non-coordinate-change) expanding eigenvalue (δ).

Sketch in a suitable space of functions

 Σ_n — surface of functions with a superstable period 2^n orbit.

Some Previous Results

Analytical proofs including many recent generalisations:

1986 Epstein 1987 Sullivan 1996 McMullen 1999 Lyubich 2006 Faria et al. 2011 Avila et al. 2018 Gorbovickis et al.

First approaches via **rigorous computer-assisted proofs**.

1982 Lanford [above, left] (Other scenarios:) 1984 Eckmann, Koch, Wittwer 1985 Mestel 1999 Stirnemann The renormalisation fixed point (one computational approach)

Renormalisation operator, R

 $Rg(x) := a^{-1}g(g(ax)), \text{ where } a := g(1).$

We seek a nontrivial solution, g^* , to the functional equation

$$g^*(x) = a^{-1}g^*(g^*(ax)), \text{ with } a = g^*(1).$$

Ansatz $g(x) = G(x^d)$: Let $X = x^d =: Q(x)$ and write

$$g(x) = G(Q(x)) = G(X).$$

Corresponding operator, T:

$$TG(X) := a^{-1}G(Q(G(Q(a)X))), \text{ where } a := G(1).$$

Approximate fixed point function $g^0(x) = G^0(x^d)$

Nonrigorous approximation to $g^*(z)$ for d = 4.

A suitable function space: the (poly)disc algebra

Consider the space $\mathcal{A}=\mathscr{A}(\Omega)$ of functions analytic on a disc

$$\Omega = D(c,r) := \{ z \in \mathbb{C} : |z - c| < r \}$$

and continuous on its closure, $\overline{\Omega}$, with (finite) ℓ_1 -norm:

$$f(z) = \sum_{k=0}^{\infty} a_k \left(\frac{z-c}{r}\right)^k$$
, $||f|| = ||f||_1 := \sum_{k=0}^{\infty} |a_k|$.

Operations:

$$\begin{array}{rcl} (f+g)(z) &:=& f(z)+g(z)\\ (af)(z) &:=& af(z),\\ (f\cdot g)(z) &:=& f(z)\,g(z),\\ (f\circ g)(z) &:=& f(g(z)). \end{array}$$

 \mathcal{A} is a Banach space with Schauder basis, e.g., $e_j(z) = \left(\frac{z-c}{r}\right)^j$.

Rigorous computations in the function space?

Two fundamental hurdles: (a) the function space is infinite-dimensional (b) computer arithmetic is not exact

Work with power series truncated after some fixed degree *N*.

 $\ell_1 \cong \mathbb{R}^{N+1} \oplus \ell_1.$

Let PA and HA = (I - P)A denote canonical projections onto the polynomial part and high-order part.

Write $f \in \mathcal{A}$ as

$$f=f_P+f_H,$$

with $f_H \in H\mathcal{A}$ and $f_P \in P\mathcal{A}$ where

$$f_P(x) = \sum_{k=0}^N a_k \left(\frac{x-c}{r}\right)^k.$$

Rigorous framework

Idea: use sets of objects, with bounds represented exactly.

Let $v_P = ([b_0, c_0], \dots, [b_N, c_N])$ be a vector of intervals. Let $v_H, v_G \ge 0$.

Define the (convex, closed) **function ball** $B(v_P, v_H, v_G) \subset A$ by

$$B(v_P, v_H, v_G) := \{f \in \mathcal{A} : f = f_P + f_H + f_G, f_P \in P\mathcal{A}, f_H \in H\mathcal{A}, f_G \in \mathcal{A}, f_P(z) = \sum_{k=0}^N a_k \left(\frac{z-c}{r}\right)^k, a_k \in [b_k, c_k], \|f_H\| \leq v_H, \|f_G\| \leq v_G\}.$$

Use **computer-representable numbers** for bounds (v_P, v_H, v_G) . For each binary operation \oplus , design a version, \oplus_b , acting on

bounds *v*, *w* such that

 $\forall f \in B(v), g \in B(w): \qquad f \oplus g \in B(v \oplus_b w).$

Analogy (interval arithmetic): $x \in X = [a, b]$ and $y \in Y = [c, d]$

$$x + y \in X + Y = \{z = u + v : u \in X, v \in Y\}$$
$$= [a + c, b + d]$$
$$\subseteq [a + c, b + d],$$

where $+_{\downarrow}$, $+_{\uparrow}$ always yield representable lower/upper bounds. **Operations on** A: f + g, af, $f \cdot g$, $f \circ g$, ||f||, \swarrow'_{\prime} , $f' \circ g$. [Moore 1966. Eckmann, Koch, Wittwer 1982. Kaucher et al 2014.]

Bounds on the fixed point

Newton's method as a contraction mapping

Newton operator for fixed points, T(G) - G = 0:

$$\Phi: G \mapsto G - [DT(G) - I]^{-1}(T(G) - G),$$

Idea: show that Φ is a contraction map on ball $B^1 = B(G^0; 0, \rho)$, for which we first prove that *T* is C^{∞} and DT(G) is compact.

3 ingredients:

Bounds

Bound 2: uniform contractivity

Idea: bound $||D\Phi(G)|| \leq \kappa < 1$, $\forall G \in B^1$, and use the **mean value theorem**.

Use 'maximum column sum norm' (countable basis, $\{e_j\}_{j \ge 0}$):

$$\|D\Phi(G)\| = \sup_{\|\delta G\|=1} \|D\Phi(G)\delta G\|$$

$$\leq \sup_{j\geq 0} \|D\Phi(G)e_j\| \leq \kappa < 1.$$

Compute $D\Phi(B^1)E_j$ for balls $E_j := B(e_j; 0, 0)$ for j = 0, ..., N. **Problem: infinitely-many basis elements remain.** Idea: compute $D\Phi(B^1)E_H$ for the single ball $E_H := B(0; 1, 0)$. Important: we need that *T* is **well-defined and differentiable**, with **compact derivative**, DT(G), for all *G* in B^1 .

 $TG(X) := a^{-1}G(Q(G(Q(a)X))), \text{ where } a := G(1).$

Domain extension: For all $G \in B^1$

 $Q(a)\overline{\Omega} \subset \Omega,$ $Q(G(Q(a)\overline{\Omega})) \subset \Omega.$

For d = 4, we may choose $\Omega = D(0.5754, 0.8)$.

Newton-like operator

Consider Newton operator for the fixed-point problem $\phi: G \mapsto G - [DT(G) - I]^{-1}(T(G) - G).$

Simplify: choose an invertible linear operator Λ and consider

$$\Phi: G \mapsto G - \mathbf{\Lambda}(T(G) - G),$$

We choose

$$\Lambda \simeq [DT(G) - I]^{-1}.$$

Idea: Approximate DT(G) by a <u>**fixed**</u> linear operator

 $\Delta \simeq DT(G^0)$ with $\Delta H\mathcal{A} = 0$.

The Frechet derivative of the Newton-like operator Φ

 $D\Phi(G): \delta G \mapsto \delta G - \mathbf{\Lambda}[DT(G)\delta G - \delta G].$

Newton-like operator

 $\Phi: G \mapsto G - \mathbf{\Lambda}(T(G) - G),$

For the choice $\Lambda = (\Delta - I)^{-1}$, $\Lambda(\delta b_H) = (-I)\delta b_H$ for $\delta b_H \in HA$.

$$D\Phi(B^1)\delta b_H = \delta b_H - \Lambda \left[DT(B^1)\delta b_H - \delta b_H \right]$$
(1)

$$= \delta b_H - \Lambda \left[DT(B^1) \delta b_H \right] - \delta b_H \tag{2}$$

$$= -\Lambda \left[DT(B^1)\delta b_H \right].$$
(3)

Computing $||D\Phi(B^1)E_H||$ naively, using (1) instead of (3) gives $\kappa > 2$, even where $D\Phi(B^1)$ is contractive, due to implicit presence of 'uncancelled' terms $\delta b_H - \delta b_H$ in (2). (Operands in expressions of the form ||f - g|| are treated as independent (high-order) functions; analogy: [0, 1] - [0, 1] = [-1, 1] for x - x.)

For the operator *T*:

$$T(G)(X) = a^{-1}G(Q(G(Q(a)x))).$$

We obtain (expanded to show linearity in δG)

$$\begin{split} DT(G) &: \delta G \mapsto \\ &-a^{-2} \delta a \cdot G(Q(G(Q(a)X))) \\ &+a^{-1} \delta G(Q(G(Q(a)X))) \\ &+a^{-1} G'(Q(G(Q(a)X))) \cdot Q'(G(Q(a)X)) \cdot \delta G(Q(a)X) \\ &+a^{-1} G'(Q(G(Q(a)X))) \cdot Q'(G(Q(a)X)) \cdot G'(Q(a)X) \cdot Q'(a) \delta a \cdot X. \end{split}$$

For a = G(1) we have $\delta a = \delta G(1)$.

Existence and local uniqueness

Example (*d* = 4): For a particular disc Ω , and truncation degree N = 40 for *G* (thus 160 for *g*) and working to 40sf, we obtain $\varepsilon = 1.59 \times 10^{-21}$, and choosing $\rho = 10^{-20}$ gives $\kappa = 6.88 \times 10^{-3}$.

Rigorous bounds on universal constants:

 $a_4 = g(1) = -0.59160991663443815013 \dots$ $\alpha_4 = 1/g(1) = -1.69030297140524485334 \dots$ Bounding eigenfunctions and eigenvalues

The spectrum of $DT(G^*)$

Compactness of a bounded linear operator $L \in \mathscr{B}(\mathcal{A}, \mathcal{A})$ implies that the spectrum of *L* consists of 0 together with **a countable set of isolated eigenvalues of finite multiplicity** (which accumulate at 0) — a generalisation of square matrices.

The spectrum of $DT(G^*)$ has 2 eigenvalues in the complement of the closed unit disc,

$$\alpha^d$$
, δ .

Note:

 α^d is a coordinate-change eigenvalue (where $\alpha = 1/G^*(1)$ is responsible for scaling in *x*).

 δ is responsible for universal scaling in parameter $\mu.$

We can bound the spectrum using contracted matrices.

Detail: Bounding the spectrum (directly)

1. Change coords to make DT(G) close to diagonal ($\forall G \in B^1$) $DT(G) \mapsto C^{-1}DT(G)C =: L.$

2. Choose $m \leq N$. Find an $(m + 1) \times (m + 1)$ 'contracted (rectangle) matrix', $M \ni L$. If $r = [a, b] + i[c, d] \subset \mathbb{C}$ then r contains an eigenvalue of $L \implies \det(M - rI) \ni 0$.

3. Smooth one-parameter family, $\mu \mapsto L_{\mu}$, with $L_1 = M(\ni L)$ and $L_0 = D$ (diag),

4. Choose discs D_1, \ldots, D_{m+1} with

 $D_k \ni \lambda_k$ for $k \leq m$, $D_{m+1} \ni \lambda_k \forall k > m$.

5. Prove, $\forall \mu \in [0, 1], \forall \lambda \in \Gamma_k := \partial D_k$, that $\det(L_{\mu} - \lambda I) \neq 0.$

The eigenproblem for a general linear operator $L \in \mathscr{B}(\mathcal{A}, \mathcal{A})$

Firstly, establish the structure of the spectrum (incl. multiplicities) and gain crude bounds via 'contracted matrices'. We want to bound eigenfunction-eigenvalue pairs (V, λ) with

$$(L - \lambda I)V = 0.$$

Take a linear (coordinate) functional φ . Normalise *V* so that

$$\lambda = \varphi(V).$$

Now solve the (nonlinear in *V*) problem: either

$$(L - \varphi(V)I)V = 0$$
, or $\begin{cases} \psi(V) - 1 = 0\\ (L - \lambda I)V = 0 & \text{for } (\lambda, V). \end{cases}$

(for some chosen normalisation functional ψ) again by proving a Newton-like op is a contraction map.

Detail: Newton's method for eigenfunctions

We want

$$0 = F(V) := DT(G^*)V - \varphi(V)V.$$

Frechet derivative DF(V) given formally by

$$DF(V): \delta V \mapsto DT(G^*)\delta V - \varphi(\delta V)V - \varphi(V)\delta V.$$

Take a fixed invertible linear operator $\Lambda \simeq DF(V^0)$ and form Newton-like operator (Care: dependency problem.)

$$\Psi: V \mapsto V - \Lambda \left[DT(G^*)V - \varphi(V)V \right].$$

Bound $\|\Psi(V^0) - V^0\| \leq \hat{\epsilon}$ and $\|D\Psi(V)\delta V\| \leq \hat{\kappa} < 1$ $\forall G \in B(G^0; 0, \rho)$ and $\forall V \in B(V^0; 0, \hat{\rho})$ and confirm $\hat{\epsilon} < \hat{\rho}(1 - \hat{\kappa})$.

Example (d = 4): eigenfunction V corresponding to δ_4 yields

$$\delta_4 = \phi(V) = +7.28468621707334336430\dots$$

Eigenfunction controlling scaling of added noise

Modify iteration $x_{n+1} = f_{\mu}(x_n)$, to add i.i.d. noise

$$x_{n+1}=f_{\mu}(x_n)+\varepsilon\xi_n.$$

Examine R(f) and take $f \rightarrow g^*$ and $\varepsilon \rightarrow 0$ to give eigenproblem

$$\gamma^2 \mathbf{W} = \mathcal{L} \mathbf{W} := L_1^2 \cdot W(Q(G(Q(a)X))) + L_2^2 \cdot W(Q(a)X))$$

with $L_1 := a^{-1}, L_2 := a^{-1}G'(Q(G(Q(a)X))) \cdot Q'(G(Q(a)X))).$

Example (d = 4): Eigenfunction $w = W \circ Q$ ('redistribute noise')

Eigenvalue ('scale var'): $\gamma_4 = +8.24391085425258681839...$

Detail: Newton method for noise eigenproblem

Define $\gamma = \varphi(W)$ and rewrite as

$$\mathcal{F}(W) := \left(\mathcal{L} - \phi(W)^2 I\right) W = 0.$$

The operator \mathcal{F} has Frechet derivative

 $D\mathcal{F}(W): \delta W \mapsto \mathcal{L}\delta W - 2\varphi(W)\varphi(\delta W)W - \varphi(W)^2\delta W.$

Newton-like operator (Care: dependency problem.)

$$\Theta(W) := W - \Lambda \mathcal{F}(W),$$

where Λ is a fixed invertible linear operator $\Lambda \simeq [D\mathcal{F}(W^0)]^{-1}$. Its Frechet derivative is

> $D\Theta(W) : \delta W$ $\mapsto \delta W - \Lambda D\mathcal{F}(W)\delta W$ $= \delta W - \Lambda [\mathcal{L}\delta W - 2\varphi(W)\varphi(\delta W)W - \varphi(W)^2\delta W].$

Detail: Dependency problem for noise operator

Define $\gamma = \phi(W)$ and rewrite as

$$\mathcal{F}(W) := \left(\mathcal{L} - \phi(W)^2 I\right) W = 0.$$

Newton-like operator

$$\Theta(W) := W - \Lambda \mathcal{F}(W),$$

To choose Λ , we take

$$D\mathcal{F}(W) \simeq \mathcal{L} - 2\varphi(W^0)W^0 e_0^* - \varphi(W^0)^2 I,$$

where $HW^0 = 0$. Take Λ to be the inverse, which gives

$$\Lambda \delta W_H = -\frac{1}{\varphi(W^0)^2} \delta W_H \quad \text{for } \delta W_H \in H\mathcal{A}.$$

Mitigate the corresponding dependency problem by noting that

$$D\Theta(W)\delta W_{H} = \left[1 - \left(\frac{\varphi(W)}{\varphi(W^{0})}\right)^{2}\right]\delta W_{H} - \Lambda \mathcal{L}\delta W_{H}.$$

25

Improving the bounds

2 independent implementations of the function ball algebra:

(1) Prototype:

Python (Decimal multi-precision floating point, rigorous directed rounding: decimal, IEEE754. Closures.)

(2) High-performance:

Julia (Binary multi-precision, rigorous directed rounding: BigFloat, IEEE754. Multiple dispatch. Closures.)

Verification:

Suite of unit tests and functional tests (incl. 'semi-symbolic').

Process-based parallelism protects hardware rounding modes.

Example (d = 4). Function ball radii achieved:

N	ρ (for G^*)	$\hat{\rho}$ (for V^*)	$\tilde{\rho}$ (for W^*)
40	10^{-20}	10^{-15}	10^{-15}
80	10^{-41}	10^{-36}	10^{-36}
160	10^{-83}	10^{-78}	10^{-77}
320	10^{-165}	10^{-159}	10^{-159}
640	10^{-331}	10^{-325}	10^{-323}

Individual power-series coefficents share (at least) this accuracy.

Julia implementation: (1) IEEE multi-precision arithmetic with directed rounding, (2) multi-processing, and (3) closures.

E.g., Digits **proven correct** for δ_4 (similarly for a_4 , α_4 , γ_4):

 $\delta_4 = \varphi(V^*)$

 $\delta_4 = +7.$ 2846862170 9929... (325 d)

Acting on pairs of maps of two variables:

$$R: \left(\begin{array}{c} g(x,y)\\ f(x,y) \end{array}\right) \mapsto \left(\begin{array}{c} \alpha g\bigl(g(x/\alpha,y/\beta),f(x/\alpha,y/\beta)\bigr)\\ \beta f\bigl(g(x/\alpha,y/\beta),f(x/\alpha,y/\beta)\bigr) \end{array}\right),$$

in which we define

$$\alpha := g(g(0,0), f(0,0))^{-1}, \beta := f(g(0,0), f(0,0))^{-1},$$

which preserves the normalisation g(0,0) = 1 and f(0,0) = 1.

A number of interesting fixed points (e.g., FS-type, Bicritical) and periodic orbits (e.g., C-type).

Ansatz for a particular form of unidirectional coupling

Ansatz (relevant to "FS-type" universality)

$$g(x,y) := \tilde{g}(x),$$

$$f(x,y) := y + \tilde{f}(x).$$

Gives

$$R: \begin{pmatrix} \tilde{g}(x) \\ y+\tilde{f}(x) \end{pmatrix} \mapsto \begin{pmatrix} \alpha \tilde{g}(\tilde{g}(x/\alpha)) \\ y+\beta \Big(\tilde{f}(x/\alpha)+\tilde{f}(\tilde{g}(x/\alpha)) \Big) \end{pmatrix},$$

with

$$\begin{aligned} \alpha &:= \tilde{g}\big(\tilde{g}(0)\big)^{-1}, \\ \beta &:= \left(\tilde{f}(0) + \tilde{f}\big(\tilde{g}(0)\big)\right)^{-1}, \end{aligned}$$

which preserves the normalisation $\tilde{g}(0) = 1$ and $\tilde{f}(0) = 1$.

Conjectured fixed point

Seek nontrivial solutions, \tilde{f} , of the functional equation

$$y + \tilde{f}(x) = y + \beta \left(\tilde{f}(x/\alpha) + \tilde{f}(g^*(x/\alpha)) \right).$$

[Kuznetsov et al.] For d = 2 nontrivial solutions include: (1) $\tilde{f}(x) = g^*(x) - x$ and $\beta = \alpha = -2.50290787...$ (2) A conjectured (even) solution for which $\beta \simeq -4.58619671$.

Proof (2): Seek nontrivial fixed point \tilde{f} of

$$\mathcal{K}: \tilde{f}(x) \mapsto \beta\left(\tilde{f}(x/\alpha) + \tilde{f}(g^*(x/\alpha))\right).$$

Write $\tilde{f}(x) = \tilde{F}(x^2)$ and $X = x^2$, use $B(G^0, \rho_G) \ni G^*$, and consider

$$K: \tilde{F}(X) \mapsto \beta\left(\tilde{F}(X/\alpha^2) + \tilde{F}(G^*(X/\alpha^2)^2)\right),$$

where $\alpha := G^*(G^*(0)^2)^{-1}, \quad \beta := (\tilde{F}(0) + \tilde{F}(G^*(0)^2))^{-1}.$

Proof of existence for the fixed-point functions \tilde{F} , \tilde{f} (d = 2)

Can take N = 20 with $\rho_G = 10^{-11}$ giving $\varepsilon_F = 1.6 \times 10^{-8}$. Then $\rho_F = 10^{-7}$ gives $\kappa_F = 4.2 \times 10^{-2}$, $\beta \in [-4.58620, -4.58619]$.

With N = 160, $\rho_G = 10^{-98}$, $\rho_F = 10^{-93}$: $\kappa_F = 1.7 \times 10^{-23}$ and

Further work

1/ Bifurcation of the FS-type fixed point into the *C*-type 2-cycle: $\sigma(DR(g^*, f^*)) \ni \lambda = \delta_2/\beta_2 = -1.018...$ (bidirectional coupling). Period-doubling in the dynamics of *R* itself (at $d = d_c < 2$):

2/ Bicritical (B-type) fixed point.

[Kuznetsov, Sataev (1992). Kuznetsov, Kuznetsov, Sataev (2005). Kuznetsov, Mailybaev, Sataev (2008). Laugesen et. al. (2011)] Rigid complex rotation

 $z \mapsto \lambda z$, $|\lambda| = 1$.

Perturb (for ω golden mean):

$$f: z \mapsto e^{2\pi\omega i} z + \sum_{k=2}^{\infty} f_k z^k.$$

Critical scaling at Fibonacci iterates

$$R: \left(\begin{array}{c} F\\G\end{array}\right) \mapsto \alpha \left(\begin{array}{c} G\\F\circ G\end{array}\right) \alpha^{-1}.$$

[Stirnemann 1992, 1993; Burbanks, Osbaldestin, Stirnemann 1997, 1998, 1999]

Some computational issues and challenges

- Axioms and unit tests.
- Dependency problems.
- Directed rounding.
- Thread safety / multiprocessing / memory management.
- Efficient rigorous arithmetic (e.g., reducing allocations).
- Alternative interval / complex representations.

- Finding good domains.
- Automation of Frechet differentiation.
- Efficient spectral bounds.
- Adaptive coverings / Adaptive precision.
- Alternative bases.
- Alternative norms / spaces.
- Multivariable framework.
- Generic framework.

[1] Burbanks, Osbaldestin. *Existence of the FS-type renormalisation fixed point for unidirectionally-coupled pairs of maps*,J. Phys. A: Math. Theor. 56, 195202 (2023)

[2] Burbanks, Osbaldestin, Thurlby. *Rigorous computer-assisted bounds* on the period doubling renormalization fixed point and eigenfunctions in maps with critical point of degree 4,
J. Math. Phys. 62, 112701 (2021)

[3] Burbanks, Osbaldestin, Thurlby. *Rigorous computer-assisted bounds on renormalisation fixed point functions, eigenfunctions, and universal constants*, arXiv: 2103.05991 [math.DS] (2021)

andrew.burbanks@port.ac.uk

School of Mathematics and Physics, University of Portsmouth, UK

Additional materials

Detail: Formal Fréchet derivative DR(g, f)

Let
$$\tilde{g} = g(x/\alpha, y/\beta), \tilde{f} = f(x/\alpha, y/\beta)$$
, then
 $DR(g, f) : (\delta g(x, y), \delta f(x, y)) \mapsto$
 $\begin{pmatrix} \delta \alpha \cdot g(\tilde{g}, \tilde{f}) + \alpha (\delta g(\tilde{g}, \tilde{f}) + \partial_1 g(\tilde{g}, \tilde{f}) \cdot \delta \tilde{g} + \partial_2 g(\tilde{g}, \tilde{f}) \cdot \delta \tilde{f}) \\ \delta \beta \cdot f(\tilde{g}, \tilde{f}) + \beta (\delta f(\tilde{g}, \tilde{f}) + \partial_1 f(\tilde{g}, \tilde{f}) \cdot \delta \tilde{g} + \partial_2 f(\tilde{g}, \tilde{f}) \cdot \delta \tilde{f}) \end{pmatrix},$

where the perturbations $\delta \tilde{g}$, $\delta \tilde{f}$ are

$$\begin{split} \delta \tilde{g} &= \delta g(x/\alpha, y/\beta) + \partial_1 g(x/\alpha, y/\beta) \cdot (-1/\alpha^2) \delta \alpha \cdot x \\ &+ \partial_2 g(x/\alpha, y/\beta) \cdot (-1/\beta^2) \delta \beta \cdot y, \\ \delta \tilde{f} &= \delta f(x/\alpha, y/\beta) + \partial_1 f(x/\alpha, y/\beta) \cdot (-1/\alpha^2) \delta \alpha \cdot x \\ &+ \partial_2 f(x/\alpha, y/\beta) \cdot (-1/\beta^2) \delta \beta \cdot y, \\ \delta \alpha &= -\alpha^2 \cdot (\delta g(g(0,0), f(0,0)) + \partial_1 g(g(0,0), f(0,0)) \cdot \delta g(0,0) \\ &+ \partial_2 g(g(0,0), f(0,0)) \cdot \delta f(0,0)), \\ \delta \beta &= -\beta^2 \cdot (\delta f(g(0,0), f(0,0)) + \partial_1 f(g(0,0), f(0,0)) \cdot \delta g(0,0) \\ &+ \partial_2 f(g(0,0), f(0,0)) \cdot \delta f(0,0)). \end{split}$$

Detail: Improving the bounds (FS-type fixed point)

Function ball radii achieved (using truncation *N*, precision *P*):

N	Р	ρ _G	ε_F	ρ_F	κ _F
20	20	10 ⁻¹¹	$1.6 imes10^{-8}$	10^{-7}	$4.2 imes 10^{-2}$
40	40	10^{-23}	$2.6 imes10^{-20}$	10^{-19}	$5.5 imes10^{-5}$
80	80	10^{-48}	$4.8 imes10^{-45}$	10^{-43}	$4.7 imes10^{-11}$
160	160	10 ⁻⁹⁸	$9.1 imes 10^{-95}$	10^{-93}	$1.7 imes 10^{-23}$

Implementation: (1) IEEE multi-precision arithmetic & directed rounding, (2) threads multi-processing, and (3) closures.

2 independent implementations of the function-ball algebra:

- (a) Prototype: Python (decimal).
- (b) High-performance: Julia (binary). Multiple dispatch.

Verification: Over 1200 unit tests and functional tests.

Detail: Dealing with *R* **directly**

Banach space, $\mathscr{A}(\Omega_0) \times \mathscr{A}(\Omega_1)$, of pairs, $g = g_0 \oplus g_1$, on domain $\Omega = \Omega_0 \cup \Omega_1$ (representing hybrid functions), where $0 \in \Omega_0 = \mathbb{D}(c_0, r_0), 1 \in \Omega_1 = \mathbb{D}(c_1, r_1)$, and $\Omega_0 \cap \Omega_1 \neq \emptyset$,

 $||g|| := ||g_0|| + ||g_1||.$

Example (d = 4): $\Omega_0 = \mathbb{D}(-0.1, 0.7),$ $\Omega_1 = \mathbb{D}(0.85, 0.3).$

Domain extension: $R(g) = a^{-1}g(g(ax)),$ $a\overline{\Omega} \subset \Omega_0,$ $g(a\overline{\Omega}) \subset \Omega_1.$

The spectrum of $DR(g^*)$ has 5 eigenvalues with $|\lambda| > 1$:

$$\alpha_4^4, \delta_4, \alpha_4^3, \alpha_4^2, \alpha_4, \alpha_4,$$

 $(DT(G^*)$ has 2 of these: α_4^4, δ_4 .)

 α_4^4 : non-essential (coordinate-change) eigenvalue.

 α_4^3 , α_4^1 : destroy symmetry of quartic critical point.

 α_4^2 : tricritical vector scaling for locally bimodal maps where one quadratic extremum is mapped to another: fixed point

 $R(q_2) = q_2$: $q_2(x) = g^*(\sqrt{x})^2 = G^*(x^2)^2$ with scaling $g^*(1)^2 = \alpha_4^2$.

Detail: Contracted vectors

Banach space $X = PX \oplus HX$ with basis $\{e_1, e_2, \dots, e_m\}$ of *PX*:

$$Px = \sum_{i=1}^{m} \phi_i(x) e_i.$$

Defn: A 'contracted' interval vector $u = (u_1, ..., u_{m+1})$ contains x (written $x \in u$) if

$$\begin{split} & \phi_k(x) \in u_k, \quad 1 \leqslant k \leqslant m, \\ & \text{and} \quad \psi(Hx) \in u_{m+1} \quad \forall \psi \in (HX)^*, \|\psi\| \leqslant 1. \end{split}$$

Example: If $x \in X$ and intervals $u_k \ni \phi_k(x)$, then

$$x \in u = (u_1, \ldots, u_m, [-||Hx||, +||Hx||]).$$

Important Properties:

$$\begin{aligned} x \in u, \ y \in v \implies x + y \in u + v, \\ x \in u, \ \lambda \in \ell \implies \lambda x \in \ell u. \end{aligned}$$

Detail: Contracted matrices

Let $L \in \mathscr{B}(X, X)$. In block form, w.r.t. $X = PX \oplus HX$ and $\{e_k\}$:

$$L = \begin{pmatrix} a_{11} & \cdots & a_{1m} & \theta_1 \\ \vdots & \ddots & \vdots & \vdots \\ \underline{a_{m1}} & \cdots & a_{mm} & \theta_m \\ \hline t_1 & \cdots & t_m & \Theta \end{pmatrix}$$

If the 'matrix elements' $a_{jk} \in c_{jk}$, then *L* is contained by

Important Properties:

 $L \in C, \ x \in u \implies Lx \in Cu,$ $L \in C, \ \lambda \in \sigma(L), \ \lambda \in r \implies \det(C - rI) \ni 0.$

Detail: Delta eigenfunction, choice of fixed linear operator

Newton-like operator for $F(V) = (DT(G^*) - \varphi(V))V = 0$:

 $\Psi: V \mapsto V - \Lambda \left[DT(G^*)V - \varphi(V)V \right].$

Aim: bound $\|\Psi(V^0) - V^0\| \leq \hat{\epsilon}$ via ops on (singleton) ball $B(V^0; 0, 0)$, bound $\|D\Psi(V)(e_j)\| \leq \kappa < 1$ for all $V \in B(V^0; 0, \hat{\rho})$ and all $j \geq 0$.

Anticipating a dependency problem, examine DF(V):

$$DF(V)\delta V = (DT(G) - Ve_k^* - V_k I) \,\delta V,$$

$$DF(V) \simeq \Delta - V^0 e_k^* - V_k^0 I,$$

Assume wlog, k = 0 so that $\varphi(V) = V_0$ then, for $HV^0 = 0$, take

$$\Gamma = \Delta - V^0 e_0^* - V_0^0 I = \begin{pmatrix} \Delta_{00} - 2V_0^0 & \Delta_{01} & \cdots & \Delta_{0N} & 0\\ \Delta_{10} - V_1^0 & \Delta_{11} - V_0^0 & \cdots & \Delta_{1N} & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ \underline{\Delta_{N0} - V_N^0 & \Delta_{N1} & \cdots & \Delta_{NN} - V_0^0 & 0\\ \hline 0 & 0 & \cdots & 0 & -V_0^0 I \end{pmatrix}$$

Detail: Dependency problem for delta eigenfunction

Recall that

$$\Psi: V \mapsto V - \Lambda \big[DT(G)V - \varphi(V)V \big],$$

with Frechet derivative

$$D\Psi(V): \delta V \mapsto \delta V - \Lambda \big[DT(G) \delta V - \varphi(\delta V) V - \varphi(V) \delta V \big].$$

Consider the action of $D\Psi(V)$ on $\delta V_H \in H\mathcal{A}$:

$$D\Psi(V)\delta V_{H} = \delta V_{H} - \Lambda \left[DT(G)\delta V_{H} - \varphi(V)\delta V_{H} \right] \quad (*)$$
$$= \left[1 - \frac{\varphi(V)}{\varphi(V^{0})} \right] \delta V_{H} - \Lambda DT(G)\delta V_{H}, \quad (**)$$

since $\varphi(\delta V_H) = 0$ and the action of Λ on the high-order part of the space is given by $-(1/V_0^0)I$. Note: for *V* close to V^0 , the first term in (**) is close to zero.

When bounding $||D\Psi(B(V^0;0,\hat{\rho}))(E_H)||$, we therefore use (**) for $D\Psi(V)\delta V_H$, with $V \in B(V^0;0,\hat{\rho})$, when computing $D\Psi(V)E_H$.