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Reachability Problems

Given:  An initial state X, a target 
state Y and a set of transformations F
Question: Does a state Y is reachable 
from X following a sequence of 
transformations from F ?
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From affine maps to Matrix Semigroups 



Pseudo billiard dynamics 
(“strange billiard”)

• If N = 3 and ρi = 1/3, the above dynamics it is 
equivalent to studying the movement of a 
particle inside the equilateral triangle

• Every time the particle touches one of the 
edges the direction of its trajectory changes 
following the vector (in the above case 
perpendicular to that edge).

Theorem. Pseudo-Billiard System (PBS) is equivalent to 
Piecewise Affine Map (PAM) [SKP, IJFCS 2008]





Reachability for PAMs

n OPEN PROBLEM even in case of two intervals
 

 î
í
ì

Î+
Î+

=
2

1

,
,

)(
Ixdcx
Ixbax

xf

ax+b cx+d
I1 I2

a,b,c,d and interval’s borders are 
rational numbers

Given: some initial point x0 and PAM f(x)
Question: Is y is reachable from x0 after a finite number of iterations?

Known to be undecidable in dimension two.

Piecewise affine maps (PAMs) are frequently 
used as a reference model to show the openness 
of the reachability questions in other systems. 

f(x0): x0 —>x1 —>x2 —>x3 —> … —>xi —> … 

map(x)
{  if x=y  then  halt
   if x ∊ I1  then   
            map(ax+b)
     else map(cx+d) 
}  



The Bernoulli Shift

The Bernoulli shift is a simple example of chaotic map 
– orbits are dense; 
– the system is sensitive to initial conditions.

However the reachability problem for it is trivially decidable. 

                            x0=1.01010101101011

i.e. starting from any rational number in binary representation
2x – shift of the number and 2x-1 - shift and removal of one.



𝛽-expansion

positive. Therefore, the only interesting case is when β > 2. We denote D =
{0, 1, . . . , !β" − 1}. Then the minimal and maximal numbers, which are repre-
sentable in the basis β with digits from the alphabet D, aremin =

∑∞
i=1 0

1
βi = 0

and max =
∑∞

i=1 (!β" − 1) 1
βi = "β#−1

β−1 . When β > 2 then max is always less

then two. Let us denote by Xd the interval [min+d
β

, max+d
β

) for each d ∈ D. If β
is not an integer number then two intervals Xd and Xd+1 intersect. Also taking
into account that max < 2, then the intervals Xd and Xd+2 have no common
points. Finally from the above construction we get the next lemma:

Lemma 3. If β > 2 and β is rational/non-integer number: Xd ∩ Xd+1 &= ∅,
d < !β" − 1; Xd ∩Xd+2 = ∅, d < !β" − 2; [min,max) = ∪d∈AXd.

Proposition 1. For any β-expansion there is a non-deterministic PAM where a
symbolic dynamic of visited intervals (i.e. a sequence of symbols associated with
intervals) from an initial point x0 corresponds to its representation in base β.

Proof. Let us define the piecewise affine mapping f ⊆ [min,max)× [min,max)
as follows f = {(x,βx − d)|x ∈ Xd, d ∈ D}. It directly follows from this
definition that f(Xd) = [min,max). Let us consider an orbit f i(x) = x(i),

Fig. 1. A non-deterministic PAM for 5
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→ 0, n → ∞, and therefore

x =
∑∞

i=1(di
1
βi ). Let us consider it in other direction. Let x =

∑∞
i=1(di

1
βi ), then

the sequence x(i), where x(0) = x, x(i + 1) = βx(i) − di, is the orbit of x in
PAM f . Let us name the constructed map as the β-expansion PAM. -.

The nondeterministic β-expansion can be translated into deterministic maps
corresponding to greedy and lazy expansions as follows:

Definition 3. A function f : [min,max) → [min,max) is the greedy β-expansion
PAM if the domain [min,max) is divided on intervals X ′

d, d ∈ {0, 1, . . . , !β"−1}
such that X ′

"β#−1 = X"β#−1, X
′
d−1 = Xd−1 − Xd, d ∈ {1, 2, . . . , !β" − 1} and

f(x) = βx − d iff x ∈ X ′
d.

condition of the theorem means that for any prime p ∈ F all linear coefficients
of the map f have non-zero p-adic weights of the same sign.

In this case, if p-adic weights of linear coefficients of f are non-negative,
then for any x ∈ X from ‖x‖p > h follows that ‖f(x)‖p ≥ ‖x‖p and therefore
‖f(x)‖m ≥ ‖x‖m (i.e. m-adic weight does not decrease). If p-adic weight of
linear coefficients of the mapping are negative, then for any x ∈ X we have
‖f(x)‖p ≤ max{‖x‖p, h}.

Thus, in the sequence of reachable points for an orbit of a map f either all
points of the orbit have m-adic weights bounded from above by h, then we have
a cyclic orbit, or from some moment when m-adic weight of a reachable point
exceeds h it does not decrease and again, either orbit loops or m-adic weight
increases indefinitely.

Thus, in order to decide whether y is reachable, i.e. y ∈ Of (x), it is sufficient
to start generating a sequence of reachable points in the orbit Of (x) and wait
for one of the events, where either 1) a point in the orbit is equal to y ( y is
reachable ), or 2) the orbit will loop and y /∈ Of (x) ( y is not reachable ), or 3)
a point x′ is reachable, such that ‖x′‖m > max{h, ‖y‖m}, and then y /∈ Of (x) (
y is not reachable ). %&

Definition 1. A piecewise affine mapping f : S1 → S1 is complete if for a set
of disjoint intervals S1 = X1 ∪X2 ∪ . . . ∪Xn, f(Xi) = S1 for any i = 1..n.

Definition 2. Let be F : R → R is the lifting of a continuous map f : S1 → S1

on R, i.e. f({x}) = {F (x)}. Then by the degree deg(f) of a map f we denote
the number F (x+ 1)− F (x), which is independent from the choice of the point
x and the lifting F .

Corollary 2. The reachability problem for complete piecewise affine mappings
with two intervals 5 is decidable.

Proof. The condition of a piecewise affine map with two intervals f : S1 → S1

to be complete means that S1 = X1 ∪ X2 and f(X1) = f(X2) = S1. Thus,
if X1 =

[

0, m
n

]

and X2 =
[

m
n , 1

)

, then f (x) = a1x + b1, where a1 = ± n
m ,

when x ∈ X1, and f (x) = a2x + b2, where a2 = ± n
n−m

at x ∈ X2, m,n ∈ N,
gcd(m,n) = 1. It is clear that n, m, n−m are relatively prime. So the conditions
of Theorem 2 are satisfied. %&

4 PAM representation of β-expansions

Given a rational non-integer β > 1 and the number x ∈ [0, 1]. The target
discounted-sum 0-1 problem [22, 11] is defined as follows: Is there a sequence
w : N → {0, 1} of zeros and ones such that x =

∑∞
i=1 w(i)

1
βi .

For any x ∈ S1, there exists β-expansion w : N → {0, 1, . . . , *β+ − 1} such
that x =

∑∞
i=1 w(i)

1
βi . If w(i) ∈ {0, 1} we call it (0, 1)− β-expansion. There-

fore, when β ≤ 2 the answer to the target discounted-sum problem is always

5 In particularly the continuous piecewise affine mapping of degree two
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In decimal base:        479.32 = 4·102 + 7·101 + 9·100 + 3·10-1  + 2·10-2

Any number can be written in any nonintegral base  𝛽 >1 

For example  0.102[5/2] = 66/125 [5/2] =1 · (2/5) + 0 · (2/5 )2 + 2 · (2/5 )3



Reachability in full PAMs          => 
                                Reachability in Matrix semigroups

f1(x) f2(x) f3(x)

𝑎 𝑏
0 1

𝑥
1

𝑐 𝑑
0 1

𝑥
1

𝑝 𝑞
0 1

𝑥
1

f1-1(x), f2-1(x), f3-1(x)

Reachability in PAM = > Point-to-point reachability in 
Nondeterministic map 

Reachability for full PAMS with two intervals is decidable

ax+b cx+d px+q

Olivier Bournez, Oleksiy Kurganskyy, Igor Potapov: Reachability Problems for One-
Dimensional Piecewise Affine Maps. Int. J. Found. Comput. Sci. 29(4): 529-549 (2018)



Decision Problems in Matrix Semigroups

• Constraints
• Dimension 
• Domain
• Generator Set
• Recursion Depth 

• Questions on
• Matrices, Vectors, Scalars

Dimension Domain

Generator size

Recursion Depth

1

2

3

4

ℕ
ℤ
ℚ

ℂ
𝔸

ℍ

1 2 3 4 5 6 7 8 9 10 11







Variants of parametrized 
membership

PART 2: The Proposal
A. Background
Matrix theory is part of the bedrock of the mathematical sciences
and is a rich source of challenging and fundamental algorithmic
problems. In particular, reachability problems for matrices lie
at the heart of the verification of software, probabilistic systems,
and hybrid systems. As detailed in Part 1, the applicants have a
common interest and complementary expertise in the theory and
applications of matrix reachability problems. This grant supports
a commonly developed research program that will help pool ex-
pertise, build synergy, identify new methodologies and applica-
tions, and consolidate the UK’s remarkable strength in this area.

Many simply stated problems on matrix products lead to
challenging algorithmic questions. One such question is the
Membership problem for matrix semigroups: Given a finite set

of m ⇥ m matrices {M1,M2, . . . ,Mn} and a matrix M. Deter-

mine whether there exist an integer k � 1 and i1, i2, . . . , ik 2
{1, . . . ,n} such that Mi1 · Mi2 · · ·Mik = M. In other words, de-

termine whether M belongs to the generated semigroup.

The computational complexity of algorithmic problems on
matrix semigroups depends on several parameters, including the
dimension of the matrices, the underlying numerical domain (i.e.
Z, Q, C, H or A), the size of the generating set, and constraints
on the allowed reachability paths.

Two special cases of the membership problem are the Mortal-
ity problem (in which M is fixed to be the zero matrix) and the
Identity problem (in which M is fixed to be the identity matrix).
The Mortality problem is undecidable for integer matrices in di-
mension 3 [?] while the Identity problem is undecidable for inte-
ger matrices in dimension 4[?]. In another direction the follow-
ing variants of the membership problem relax the requirements
on the target matrix:

• Vector reachability (Decide for given vectors u and v
whether there exists a matrix M in S such that M ·u = v)

• Polyhedron-hitting (Decide for a given polyhedron V and
vector u whether there exists a matrix M such that M ·u2V )

• Scalar reachability (Decide for a given vectors u, v and a
scalar l whether exists M 2 S such that u ·M · v = l)

• Freeness (Decide whether every matrix product in S is
unique, i.e. whether it is a code).

In the context of program verification these reachability ques-
tions have been considered in [?, ?] but were left open.

A particular variant of the Scalar Reachability is the Skolem-
Pisot problem a long-standing open problem for linear recur-
rence sequences which asks for an algorithm that determines
whether a given linear recurrence sequence with integer coef-
ficients contains a zero term.

This proposal is based on three pillars. The first one calls
for more systematic exploration of the successful pilot ideas
in [?, ?, ?, ?, ?, ?, ?, ?, ?] bridging novel algorithmic and com-
plexity results with algebraic methods, symbolic representation
of matrix problems and questions derived from linear recurrence
sequences. Reachability problems have deep and fascinating
connections to complex mathematical concepts and conjectures,
particularly in the fields of analytic and algebraic number theory,
diophantine geometry and approximation, real algebraic geome-
try, mathematical logic, and complexity theory [?].

The second pillar is in the study of various qualitative
and quantitative properties about reachability sets – essential
characteristics in the context of verification, analysis of safety,
optimisation or control problems and in particular:

• the reachability distance, i.e., the distance to reachable
states in terms of discrete steps/transformations

• the maximal asymptotic growth rate, i.e. Joint Spectral
Radius (JSR) for matrix products

• the growth rates of diversity, i.e. the growth rate of dis-
tinct elements in semigroups and groups

• overapproximations, i.e. sets that includes a given matrix
semigroup while excluding certain unreachable matrices

The Reachability Distance is the most natural characteristics
– the number of required discrete transformations for reaching a
specific state. Understanding the upper and lower bounds on the
reachability distance is central in in automata theory (Cerny’s
conjecture)1, information theory (Restivo’s Conjecture), verifi-
cation (Büchi automata, inhomogeneous Markov chains), stabil-
ity and controllability (linear switching systems).

The Joint Spectral Radius characterises the maximal asymp-
totic growth rate of a set of matrices and can be considered as a
stability condition for a discrete-time switched linear system.

A measure of the largest possible growth rate of a product
of matrices from F is given by the joint spectral radius (JSR):
r̂(F) = limsupr!•

�
maxM2Fr(||M||1/r)

�
, where || · || is a matrix

norm2. Analogously the generalised spectral radius of F is de-
fined by: r(F) = limsupr!•

�
maxM2Fr(r(M)1/r)

�
, where r is

the standard spectral radius of a single matrix. It is known that
for a finite set of matrices F , r̂(F) = r(F) and as r increases,
the limiting sequence defining r̂(F) approaches this value from
above whilst the sequence defining r(F) approaches it from be-
low. The joint spectral radius can thus be approximated to any
desired accuracy, although this is known to be NP-hard even
for two matrices with {0,1} entries, see [?]. Moreover testing
whether the joint spectral radius of a given set of matrices is 1
is undecidable in general [?]. The question if r̂(F) < 1 for a
finite matrix set F is a well-known open problem [?] character-
ising the stability of a linear switching system xi+1 = Ms(i)xi,,
where s : N! {1, . . . ,n} is a switching signal and Ms(i) 2 F .

The Growth Rate in (semi)groups has proven to be a valu-
able tool for understanding structural group properties as it can
characterise the number of nontrivial identities [?]. The growth
rate is a function that counts the number of unique elements of
S of length at most n, i.e. in our case generated by a product
of n matrices from the generator set F . In matrix semigroups
growth rates are of three types: exponential, intermediate (sub-
exponential) and polynomial [?, ?]; in matrix groups there are
only two: exponential and polynomial [?]. Recent progress with
decidability of the identity problem [?, ?] motivates to study both
membership in semigroups with polynomial growth as well as
decision problems about computing growth rates.

Overapproximation is another effective approach to deal
with complex structure of matrix semigroups. Overapproxima-
tions are sets of a certain ”tame” form (e.g., polyhedral, alge-
braic, or semialgebraic sets) that are required to contain the given
matrix semigroup while excluding certain unreachable matrices.
A recent example of this approach is [?], which shows how to

1Does there always exists a synchronising sequence of quadratic length in
relation to the number of states?

2The JSR can be shown not to depend upon the chosen norm.

T



Identity Problem

Identity problem: Decide whether the identity 
matrix belongs to a matrix semigroup S.
• Undecidable for SL(4,Z) 
• Open for 3x3 matrices over Z,Q,C
• NP-complete for GL(2,Z)



Identity Correspondence Problem
• The Identity Correspondence Problem: Given a set of 

pairs of words over a binary group alphabet, can they 
simultaneously equal the empty (identity) word?

ab-1 aa a-1 a-1b

bba-1 ab-1 ba-1b

...

...

Does there exist some 
sequence such that the top 
and bottom words 
equal e?

ab-1 aaa-1a-1ba-1 = e

A Solution!

ab-1 aa

bba-1

a-1

ab-1

a-1b

ba-1b

a-1

ab-1 bba-1 ab-1ba-1bab-1= e

Identity Correspondence Problem is undecidable 
[ Bell, Potapov,   Int. J. Found. Comput. Sci. 21(6): 963-978 (2010) ]



Given a semigroup S generated by eight 4 × 4 integer matrices 
with a determinant one(e.g. from SL(4,Z) , determining whether 
the identity matrix belongs to S is undecidable. [ICALP 2018]

Identity problem
• Identity Correspondence Problem is Undecidable for 48 pairs of 

words over a group alphabet.
• Identity problems for SL(4,Z) is Undecidable, e.g. to check 

whether a given finitely generated matrix semigroup contains an 
identity matrix.

• The identity problem is 
• open for SL(3,Z), but 
• decidable and NP-complete from SL(2,Z) [SODA 2017]

• decidable for Flat Rational Subsets of GL(2,Q) [ISSAC 2020] 

• decidable for unitriangular UT(4,Z). [Dong, MFCS 2022]

Open problem: Membership/Identity problem for matrix 
semigroup with generators from GL(2,Q)

GL(2,Q) GL(2,Q)

GL(2,Z) GL(2,Z) GL(2,Z)



• Ruiwen Dong shown that the Identity problem is 
NP-complete for SA(2,Z) [LICS 2023]

Ruiwen Dong. The Identity Problem in the special affine group of Z2 , LICS 2023



SL(2,Z) vs SL(3,Z)



SL(2,Z)                          SL(3,Z)                       SL(4,Z)

Undecidable
(with 9 matrices)

NP-complete

Vi

Ui

(UiVi) -> 

B3 B4
The 

embedding 
from a pair of 
words into B4 

does not exist 

There is an 
embedding for a 
set of pairs of 
words into the 
braid group B5,

B5

The embedding from a 
pair of words into ℂ2x2 

does not exist

 [Choffrut, Karhumäki 2005] 

Identity problem 
is decidable for    …



Heisenberg group
In mathematics, the Heisenberg group  H, named 
after Werner Heisenberg, is the group  of 3×3 upper triangular 
matrices of the form

  
under the operation of matrix multiplication,

The Heisenberg subgroup of SL(3,Z) is generated by

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Werner_Heisenberg
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Matrix_multiplication


Identity for Heisenberg Matrices over Gaussian rational Q(i) 

In the three-dimensional case, the product of two Heisenberg matrices is given by:

We define the commutator [M1, M2] of M1 and M2 by [M1, M2] = aT1 b2 −aT2 b1 ∈ Q(i). 

a + bi = r exp(iy), where r ∈ R and y ∈ [0, π) 
γ is the angle of the commutator if [M1,M2] = r exp(iγ)



The identity matrix can always be constructed using 
a solution that contains four particular matrices.

Let M1, M2, M3 and M4 be such that 
• [M1, M2] = r exp(iγ) 
• [M3, M4] = rʹ exp(iγʹ)
where pairs M1,M2 and M3,M4 have different commutator angles.
 

This difference in order and 
the different commutator 
angles ensures that we can 
control the top right corner 
elements to construct the 
identity matrix. 



Linear Recurrences vs Matrix Equations 



Matrix Equations

Outline Mortality Freeness Identity Decidable cases Conclusion

Mortality over Bounded Languages

Theorem (B., Halava, Harju, Karhumäki, Potapov, 2008)

Given integral matrices X1,X2, . . . ,Xk ⇥ Zn�n, it is algorithmically
undecidable to determine whether there exists a solution to the
equation:

X i1
1 X

i2
2 · · ·X ik

k = Z ,

where Z denotes the zero matrix and i1, i2, . . . , ik ⇥ N are
unknowns.

To prove this theorem, an encoding of Hilbert’s tenth problem was
used (next slide).

P. C. Bell Loughborough University

Algorithmic Problems for Matrix Semigroups

vs
In general UNDECIDABLE

25
AxBy=C is decidable even if A and B do not commute

……



Linear Recurrent 
Sequences (LRS)

Skolem-Pisot Problem 



Matrix Equations to Skolem:  AxByCz=0

27

Theorem. [ Inf. Comput. 281]

Let F be the ring of integers Z (Q or A). Then the ABC 
problem for matrices from Fk×k is Turing reducible to the 
Skolem problem of depth k over F.

Theorem. The ABC problem is decidable for
•  3 × 3 matrices over algebraic numbers and 
• 4 × 4 matrices over real algebraic numbers. 

• The same kind of ABCD problem may have non-semi-
linear set of solutions.

From Skolem-Pisot Problem to Matrix equations B = 01

1

x y z



Linear Recurrence Automata



Number of States - s
Number of different linear recurrences - m

Depth (order) of Recurrences - k





Linear recurrence automata of low-order k



Membership, 
Vector Reachability 
Freeness in  SL(3,Z), 
Q2x2,SL(2,Q), C2x2, 
SL(2,C), H, Z2x2 

“Chasse aux Papillons" (Chasing Butterflies) by 
Berthe Morisot (1841-1895), oil on canvas, 1874

Chasing Butterflies



UK-Ukraine Research Twinning 
Showcase and Networking

26-27 March 2024

https://www.digital-ukraine.co.uk/ 

A high-profile event with 80-100 participants. The audience 
consists of established academics running the UUKi projects 
with Ukraine, heads of international offices and global 
engagement of UK universities, PVC research, etc.


