Critical points of the multipliers #### Igors Gorbovickis Constructor University (formerly: Jacobs University, Bremen) March 11, 2024 #### The Filled-in Julia sets - Iteration of rational maps on the Riemann sphere first studied by *Pierre Fatou* and *Gaston Julia* in the late 1910s. - The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images. #### The Filled-in Julia sets - Iteration of rational maps on the Riemann sphere first studied by *Pierre Fatou* and *Gaston Julia* in the late 1910s. - The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images. - Quadratic family: $\{f_c(z) = z^2 + c \mid c \in \mathbb{C}\}.$ #### The Filled-in Julia sets - Iteration of rational maps on the Riemann sphere first studied by *Pierre Fatou* and *Gaston Julia* in the late 1910s. - The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images. - Quadratic family: $\{f_c(z) = z^2 + c \mid c \in \mathbb{C}\}.$ - Filled-in Julia set of f_c : ### The Mandelbrot set M • The Mandelbrot set: $\mathbb{M}:=\{c\in\mathbb{C}\mid 0\in\mathcal{K}_c\}$. \mathbb{M} is the set of all parameters $c\in\mathbb{C}$, for which \mathcal{K}_c is connected. ### The Mandelbrot set M • The Mandelbrot set: $\mathbb{M} := \{c \in \mathbb{C} \mid 0 \in \mathcal{K}_c\}$. \mathbb{M} is the set of all parameters $c \in \mathbb{C}$, for which \mathcal{K}_c is connected. - $\mathcal{O} = \langle z_0, z_1, \dots, z_{k-1} \rangle$ is a periodic orbit of period k for f_c . - Multiplier of \mathcal{O} : $\rho_{\mathcal{O}}(c) = f'_c(z_0)f'_c(z_1)\dots f'_c(z_{k-1})$. - A quadratic polynomial f_c is hyperbolic iff it has a periodic orbit \mathcal{O} with $|\rho_{\mathcal{O}}(c)| < 1$. (attracting periodic orbit) ### The Mandelbrot set M • The Mandelbrot set: $\mathbb{M} := \{c \in \mathbb{C} \mid 0 \in \mathcal{K}_c\}$. \mathbb{M} is the set of all parameters $c \in \mathbb{C}$, for which \mathcal{K}_c is connected. - $\mathcal{O} = \langle z_0, z_1, \dots, z_{k-1} \rangle$ is a periodic orbit of period k for f_c . - Multiplier of \mathcal{O} : $\rho_{\mathcal{O}}(c) = f'_c(z_0)f'_c(z_1)\dots f'_c(z_{k-1})$. - A quadratic polynomial f_c is hyperbolic iff it has a periodic orbit \mathcal{O} with $|\rho_{\mathcal{O}}(c)| < 1$. (attracting periodic orbit) - Density of hyperbolicity conjecture: every connected component of the interior of \mathbb{M} is a hyperbolic component. ### Multipliers as functions of the parameter Theorem (Sullivan, Douady-Hubbard): The multiplier $\rho_{\mathcal{O}}$ of an attracting periodic orbit is a Riemann mapping of the corresponding hyperbolic component H. $$\rho_{\mathcal{O}}^{-1} \colon \mathbb{D} \to H$$ is a conformal isomorphism. Observation: If $\rho_{\mathcal{O}}^{-1}$ can be extended univalently to a fixed neighborhood $U \ni \mathbb{D}$, then Koebe Distortion Theorem provides bounds on the shape of H. ## Multipliers as functions of the parameter Theorem (Sullivan, Douady-Hubbard): The multiplier $\rho_{\mathcal{O}}$ of an attracting periodic orbit is a Riemann mapping of the corresponding hyperbolic component H. $$\rho_{\mathcal{O}}^{-1} \colon \mathbb{D} \to H \qquad \text{is a conformal isomorphism}.$$ Observation: If $\rho_{\mathcal{O}}^{-1}$ can be extended univalently to a fixed neighborhood $U \ni \mathbb{D}$, then Koebe Distortion Theorem provides bounds on the shape of H. Critical values of $\rho_{\mathcal{O}}$ are the only obstacles for an analytic extension of $\rho_{\mathcal{O}}^{-1}$ beyond \mathbb{D} . Problem: Study critical points (and critical values) of the multiplier maps $\rho_{\mathcal{O}}$. (I.e., the parameters $c \in \mathbb{C}$, such that $\rho'_{\mathcal{O}}(c) = 0$.) # How to compute critical points? (joint with A. Belova) $$\frac{d\rho_k}{dc} = 2^k \left[z' \prod_{i=1}^{k-1} f_c^{\circ i}(z) + z \sum_{i=1}^{k-1} \left(\frac{df_c^{\circ i}(z)}{dc} \prod_{\substack{j=1 \ j \neq i}}^{k-1} f_c^{\circ j}(z) \right) \right]$$ $$= 2^k \left(\sum_{i=0}^{k-1} z_i' \prod_{\substack{0 \le j < k, j \ne i}}^{k-1} z_j \right),$$ where z is a periodic point of period k, ρ_k is its multiplier, and $$z' = \frac{dz}{dc} = \frac{\partial f_c^{\circ k}}{\partial c}(z) (1 - \rho_k(c))^{-1}.$$ # How to compute critical points? (joint with A. Belova) $$\frac{d\rho_{k}}{dc} = 2^{k} \left[z' \prod_{i=1}^{k-1} f_{c}^{\circ i}(z) + z \sum_{i=1}^{k-1} \left(\frac{df_{c}^{\circ i}(z)}{dc} \prod_{\substack{j=1 \ j \neq i}}^{k-1} f_{c}^{\circ j}(z) \right) \right]$$ $$= 2^{k} \left(\sum_{i=0}^{k-1} z'_{i} \prod_{\substack{0 \le j < k, j \ne i}}^{k-1} z_{j} \right),$$ where z is a periodic point of period k, ρ_k is its multiplier, and $$z' = \frac{dz}{dc} = \frac{\partial f_c^{\circ k}}{\partial c}(z) (1 - \rho_k(c))^{-1}.$$ Idea: use the 3-dimensional Newton's method for the system $$\begin{cases} f_c^{\circ k}(z) - z &= 0 \\ z' - \frac{\partial f_c^{\circ k}}{\partial c}(z) \left(1 - \frac{\partial f_c^{\circ k}}{\partial z}(z)\right)^{-1} &= 0 \\ \frac{d\rho_k}{dc} &= 0, \end{cases} \tag{1}$$ with three unknowns c, z, z'. ## When is c = 0 a critical point of $\rho_{\mathcal{O}}$? When c = 0, and $\mathcal{O} = \langle z_0, \dots, z_{k-1} \rangle$ is a periodic orbit of f_0 , $$\rho_{\mathcal{O}}'(0) = -2^k \sum_{j=0}^{k-1} z_j^{-1}.$$ | k | 6 | 12 | 18 | 20 | 21 | 24 | 30 | |-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------| | <i>z</i> ₀ | $e^{2\pi i/9}$ | $e^{2\pi i/45}$ | $e^{2\pi i/27}$ | $e^{2\pi i/25}$ | $e^{2\pi i/49}$ | $e^{2\pi i/153}$ | $e^{2\pi i/99}$ | Table: The list of all periods $k \le 30$, for which there exists a multiplier map $\rho_{\mathcal{O}}$ with a critical point at c = 0. (z_0 is a corresponding periodic point.) Lemma: For every $k \in \mathbb{N}$, the point $z_k = \exp(2\pi i/3^{k+1})$ belongs to a periodic orbit \mathcal{O}_k of period $n_k = 2 \cdot 3^k$ for the polynomial $f_0(z) = z^2$, and $\rho'_{\mathcal{O}_k}(0) = 0$. ## Equidistribution of critical points of the multipliers For any $s \in \mathbb{C}$ and any $k \in \mathbb{N}$, ▶ $X_{s,k} := \{c \in \mathbb{C} \mid \rho'_{\mathcal{O}}(c) = s, \text{ for some periodic orbit } \mathcal{O}\}.$ (Points in $X_{s,k}$ are counted with multiplicity.) $$\nu_{s,k} := \frac{1}{\# X_{s,k}} \sum_{c \in X_{s,k}} \delta_c.$$ Equidistribution Theorem (Firsova, G.): For every sequence of complex numbers $\{s_k\}_{k\in\mathbb{N}}$, such that $$\limsup_{k\to+\infty}\frac{1}{k}\log|s_k|\leq\log 2,$$ the sequence of measures $\{\nu_{s_k,k}\}_{k\in\mathbb{N}}$ converges to μ_{bif} in the weak sense of measures on \mathbb{C} , as $k\to\infty$. ### Related results for quadratic polynomials Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_0 \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_{\mathcal{O}}(c) = \rho_0$, for some \mathcal{O} of period k, equidistributes on the boundary of \mathbb{M} , as $k \to \infty$. ### Related results for quadratic polynomials Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_0 \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_{\mathcal{O}}(c) = \rho_0$, for some \mathcal{O} of period k, equidistributes on the boundary of \mathbb{M} , as $k \to \infty$. $ightharpoonup \mathcal{X} \subset \mathbb{C}$ is the accumulation set of critical points of the multipliers. Theorem (Firsova, G.): The accumulation set $\mathcal X$ is bounded, connected and contains the Mandelbrot set $\mathbb M$. Furthermore, the set $\mathcal X\setminus\mathbb M$ is nonempty and has a nonempty interior, and every critical point of any multiplier is in $\mathcal X$. ### The accumulation set ${\mathcal X}$ ## Equidistribution: Idea of the proof Step 1: For each measure ν_k , construct a potential (a subharmonic function) $u_k \colon \mathbb{C} \to [-\infty, +\infty)$, such that $$\Delta u_k = \nu_k$$. Step 2: Then convergence $u_k \to G_{\mathbb{M}}$ in L^1_{loc} as $k \to \infty$ implies weak convergence of measures $\nu_k \to \mu_{\mathrm{bif}}$. ## Equidistribution: Idea of the proof Step 1: For each measure ν_k , construct a potential (a subharmonic function) $u_k \colon \mathbb{C} \to [-\infty, +\infty)$, such that $$\Delta u_k = \nu_k$$. Step 2: Then convergence $u_k \to G_{\mathbb{M}}$ in L^1_{loc} as $k \to \infty$ implies weak convergence of measures $\nu_k \to \mu_{\mathrm{bif}}$. Lemma (Buff, Gauthier.): Any subharmonic function $u\colon \mathbb{C} \to [-\infty, +\infty)$ which coincides with $G_{\mathbb{M}}$ outside \mathbb{M} , coincides with $G_{\mathbb{M}}$ everywhere. #### **Potentials** $$ilde{\mathcal{S}}_k(c,s) := \prod_{\mathcal{O} | (c,\mathcal{O}) \in P_k} \left(s - ho_k'(f_c,\mathcal{O}) \right)$$ $ilde{\mathcal{S}}_k$ is a rational map in c with simple poles at primitive parabolic c. $$\mathcal{C}_k(c) := \prod_{\tilde{c} \in \tilde{\mathcal{P}}_k} (c - \tilde{c}).$$ $$S_k(c,s) = C_k(c)\tilde{S}_k(c,s)$$ – polynomials in c and s . Lemma: $S_k(c,s) = 0$, iff $\rho'_k(f_c,\mathcal{O}) = s$, for some k-cycle \mathcal{O} of f_c . #### **Potentials** $$ilde{\mathcal{S}}_k(c,s) := \prod_{\mathcal{O} | (c,\mathcal{O}) \in P_k} ig(s - ho_k'(f_c,\mathcal{O})ig)$$ $ilde{\mathcal{S}}_k$ is a rational map in c with simple poles at primitive parabolic c. $$C_k(c) := \prod_{\tilde{c} \in \tilde{\mathcal{P}}_k} (c - \tilde{c}).$$ $$S_k(c,s) = C_k(c)\tilde{S}_k(c,s)$$ – polynomials in c and s . Lemma: $S_k(c,s) = 0$, iff $\rho'_k(f_c,\mathcal{O}) = s$, for some k-cycle \mathcal{O} of f_c . For all $s \in \mathbb{C}$, define the potentials $$u_{s,k}(c) := \frac{1}{\deg_c S_k} \log |S_k(c,s)| = \frac{1}{\deg_c S_k} \left[\log |\tilde{S}_k(c,s)| + \log |C_k(c)| \right].$$ ## Roots of the multiplier maps in $\mathbb{C} \setminus \mathbb{M}$ The root of the multiplier of a periodic orbit \mathcal{O} : $$g_{\mathcal{O}}(c) := [\rho_{\mathcal{O}}(c)]^{1/|\mathcal{O}|}.$$ $g_{\mathcal{O}}$ is holomorphic on the double-cover of $\mathbb{C} \setminus \mathbb{M}$. The family $\{g_{\mathcal{O}}\}$ is normal. ## Roots of the multiplier maps in $\mathbb{C} \setminus \mathbb{M}$ The root of the multiplier of a periodic orbit \mathcal{O} : $$g_{\mathcal{O}}(c) := [\rho_{\mathcal{O}}(c)]^{1/|\mathcal{O}|}.$$ $g_{\mathcal{O}}$ is holomorphic on the double-cover of $\mathbb{C} \setminus \mathbb{M}$. The family $\{g_{\mathcal{O}}\}$ is normal. ▶ Orb^k is the set of all period k cycles of f_c , for $c \in \mathbb{C} \setminus \mathbb{M}$. Lemma: For any $\delta > 0$ and a compact subset $K \subset \mathbb{C} \setminus \mathbb{M}$, the following holds: $$\lim_{k\to\infty}\frac{\#\{\mathcal{O}\in \mathit{Orb}^k\colon \|g_{\mathcal{O}}-2\sqrt{\phi_{\mathbb{M}}}\|_{\mathcal{K}}<\delta\}}{\#\mathit{Orb}^k}=1,$$ where $\phi_{\mathbb{M}} \colon \mathbb{C} \setminus \mathbb{M} \to \mathbb{C} \setminus \overline{\mathbb{D}}$ is the conformal diffeomorphism, taking $(1/4, +\infty)$ to $(1, +\infty)$. ## The sets \mathcal{Y}_c - $ightharpoonup Orb_c^+$ is the set of all repelling periodic orbits of f_c . - ▶ For every $\mathcal{O} \in \mathit{Orb}^+_{c_0}$, the function $$u_{\mathcal{O}}(c) := \frac{ ho_{\mathcal{O}}'(c)}{|\mathcal{O}| \, ho_{\mathcal{O}}(c)} = [\log g_{\mathcal{O}}(c)]'$$ is defined and analytic around $c = c_0$. ▶ For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_c \subset \mathbb{C}$, defined by $$\mathcal{Y}_c := \overline{\left\{ u_{\mathcal{O}}(c) \mid \mathcal{O} \in \mathit{Orb}^+_c ight\}}.$$ ## The sets \mathcal{Y}_c - $ightharpoonup Orb_c^+$ is the set of all repelling periodic orbits of f_c . - ▶ For every $\mathcal{O} \in Orb_{c_0}^+$, the function $$u_{\mathcal{O}}(c) := \frac{\rho_{\mathcal{O}}'(c)}{|\mathcal{O}|\,\rho_{\mathcal{O}}(c)} = [\log g_{\mathcal{O}}(c)]'$$ is defined and analytic around $c = c_0$. ▶ For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_c \subset \mathbb{C}$, defined by $$\mathcal{Y}_c := \overline{\left\{ u_{\mathcal{O}}(c) \mid \mathcal{O} \in \mathit{Orb}^+_c ight\}}.$$ Theorem (Firsova, G.): The following two properties hold: - (i) For every parameter $c \in \mathbb{C} \setminus \{-2\}$, the set \mathcal{Y}_c is convex; for c=-2, the set \mathcal{Y}_{-2} is the union of a convex set and the point $-\frac{1}{6}$. - (ii) For every parameter $c \in \mathbb{C} \setminus \mathbb{M}$, the set \mathcal{Y}_c is bounded. A parameter $c \in \mathbb{C} \setminus \mathbb{M}$ belongs to \mathcal{X} , if and only if $0 \in \mathcal{Y}_c$. ## Critical points of the Hausdorff dimension function Hausdorff dimension function: $\delta(c) := \dim_H(J_c)$ Theorem (Ruelle): The function δ is real-analytic in each hyperbolic component (including the complement of \mathbb{M}). Theorem (Y. M. He, H. Nie): (Version for the quadratic family) If $c \in \mathbb{C}$ is a hyperbolic parameter and $0 \notin \mathcal{Y}_c$, then c is not a critical point of the function δ . Corollary: The Hausdorff dimension function δ has no critical points in $\mathbb{C} \setminus \mathcal{X}$. # Proof of (i): Averaging Lemma Averaging Lemma: Let $\mathcal{O}_1, \mathcal{O}_2$ be two distinct non-exceptional repelling periodic orbits of f_c . Then for any $t \in [0,1]$, there exists a sequence of periodic orbits $\mathcal{O}_3, \mathcal{O}_4, \ldots$ of f_c , such that $$g_{\mathcal{O}_j} o g_{\mathcal{O}_1}^t g_{\mathcal{O}_2}^{1-t}, \quad \text{and} \quad \nu_{\mathcal{O}_j} o t \nu_{\mathcal{O}_1} + (1-t) \nu_{\mathcal{O}_2}$$ uniformly on a neighborhood of c for appropriate branches of the powers. ### $\mathbb{M} \subset \mathcal{X}$ $$ightharpoonup F_k(c) := f_c^{\circ (k-1)}(c) = f_c^{\circ k}(0).$$ Then $F_k(c)$ is the free term of the polynomial $f_c^{\circ k}(z)$, hence $$F_k(c) = 2^{-2^k} \prod_{m \in \mathbb{N}, m \mid k} \prod_{\mathcal{O} \in Orb_c^m} \rho_{\mathcal{O}}(c),$$ where the product is taken over all $m \in \mathbb{N}$, such that m divides k and over all periodic orbits $\mathcal{O} \in Orb_c^m$. $$\frac{F_k'(c)}{kF_k(c)} = \sum_{m \in \mathbb{N}, m \mid k} \sum_{\mathcal{O} \in Orb_c^m} \frac{m}{k} \nu_{\mathcal{O}}(c) \to 0, \tag{2}$$ as $k \to \infty$ over an appropriate subsequence, provided that $c \in \operatorname{int}(\mathbb{M})$ is not parabolic or critically periodic. Idea: $0 \notin \mathcal{Y}_c$ and Averaging Lemma \implies no convergence in (2).