Critical points of the multipliers

Igors Gorbovickis

Constructor University (formerly: Jacobs University, Bremen)

March 11, 2024

The Filled-in Julia sets

- Iteration of rational maps on the Riemann sphere - first studied by Pierre Fatou and Gaston Julia in the late 1910s.
- The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images.

The Filled-in Julia sets

- Iteration of rational maps on the Riemann sphere - first studied by Pierre Fatou and Gaston Julia in the late 1910s.
- The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images.
- Quadratic family: $\left\{f_{c}(z)=z^{2}+c \mid c \in \mathbb{C}\right\}$.

The Filled-in Julia sets

- Iteration of rational maps on the Riemann sphere - first studied by Pierre Fatou and Gaston Julia in the late 1910s.
- The subject gained increased attention again in the 1980s, partly due to the emergence of computer-generated images.
- Quadratic family: $\left\{f_{c}(z)=z^{2}+c \mid c \in \mathbb{C}\right\}$.
- Filled-in Julia set of f_{c} :

$$
\begin{gathered}
K_{c}:=\{z \in \mathbb{C} \mid \\
\text { 为 }
\end{gathered}
$$

(b)

(c)

The Mandelbrot set \mathbb{M}

- The Mandelbrot set: $\mathbb{M}:=\left\{c \in \mathbb{C} \mid 0 \in K_{c}\right\}$.
\mathbb{M} is the set of all parameters $c \in \mathbb{C}$, for which K_{c} is connected.

The Mandelbrot set \mathbb{M}

- The Mandelbrot set: $\mathbb{M}:=\left\{c \in \mathbb{C} \mid 0 \in K_{c}\right\}$.
\mathbb{M} is the set of all parameters $c \in \mathbb{C}$, for which K_{c} is connected.

- $\mathcal{O}=\left\langle z_{0}, z_{1}, \ldots, z_{k-1}\right\rangle$ is a periodic orbit of period k for f_{c}.
- Multiplier of $\mathcal{O}: \rho_{\mathcal{O}}(c)=f_{c}^{\prime}\left(z_{0}\right) f_{c}^{\prime}\left(z_{1}\right) \ldots f_{c}^{\prime}\left(z_{k-1}\right)$.
- A quadratic polynomial f_{c} is hyperbolic iff it has a periodic orbit \mathcal{O} with $\left|\rho_{\mathcal{O}}(c)\right|<1$. (attracting periodic orbit)

The Mandelbrot set \mathbb{M}

- The Mandelbrot set: $\mathbb{M}:=\left\{c \in \mathbb{C} \mid 0 \in K_{c}\right\}$.
\mathbb{M} is the set of all parameters $c \in \mathbb{C}$, for which K_{c} is connected.

- $\mathcal{O}=\left\langle z_{0}, z_{1}, \ldots, z_{k-1}\right\rangle$ is a periodic orbit of period k for f_{c}.
- Multiplier of $\mathcal{O}: \rho_{\mathcal{O}}(c)=f_{c}^{\prime}\left(z_{0}\right) f_{c}^{\prime}\left(z_{1}\right) \ldots f_{c}^{\prime}\left(z_{k-1}\right)$.
- A quadratic polynomial f_{c} is hyperbolic iff it has a periodic orbit \mathcal{O} with $\left|\rho_{\mathcal{O}}(c)\right|<1$. (attracting periodic orbit)
- Density of hyperbolicity conjecture: every connected component of the interior of \mathbb{M} is a hyperbolic component.

Multipliers as functions of the parameter

Theorem (Sullivan, Douady-Hubbard): The multiplier $\rho_{\mathcal{O}}$ of an attracting periodic orbit is a Riemann mapping of the corresponding hyperbolic component H.

$$
\rho_{\mathcal{O}}^{-1}: \mathbb{D} \rightarrow H \quad \text { is a conformal isomorphism. }
$$

Observation: If $\rho_{\mathcal{O}}^{-1}$ can be extended univalently to a fixed neighborhood $U \ni \mathbb{D}$, then Koebe Distortion Theorem provides bounds on the shape of H.

Multipliers as functions of the parameter

Theorem (Sullivan, Douady-Hubbard): The multiplier $\rho_{\mathcal{O}}$ of an attracting periodic orbit is a Riemann mapping of the corresponding hyperbolic component H.

$$
\rho_{\mathcal{O}}^{-1}: \mathbb{D} \rightarrow H \quad \text { is a conformal isomorphism. }
$$

Observation: If $\rho_{\mathcal{O}}^{-1}$ can be extended univalently to a fixed neighborhood $U \ni \mathbb{D}$, then Koebe Distortion Theorem provides bounds on the shape of H.

Critical values of $\rho_{\mathcal{O}}$ are the only obstacles for an analytic extension of $\rho_{\mathcal{O}}^{-1}$ beyond \mathbb{D}.

Problem: Study critical points (and critical values) of the multiplier maps $\rho_{\mathcal{O}}$. (I.e., the parameters $c \in \mathbb{C}$, such that $\rho_{\mathcal{O}}^{\prime}(c)=0$.)

Critical points of the multiplier maps $\rho_{\mathcal{O}},|\mathcal{O}|=3$

Number of critical points $=2$

How to compute critical points? (joint with A. Belova)

$$
\begin{array}{r}
\frac{d \rho_{k}}{d c}=2^{k}\left[z^{\prime} \prod_{i=1}^{k-1} f_{c}^{\circ i}(z)+z \sum_{i=1}^{k-1}\left(\frac{d f_{c}^{\circ i}(z)}{d c} \prod_{\substack{j=1 \\
j \neq i}}^{k-1} f_{c}^{\circ j}(z)\right)\right] \\
=2^{k}\left(\sum_{i=0}^{k-1} z_{i}^{\prime} \prod_{0 \leq j<k, j \neq i}^{k-1} z_{j}\right),
\end{array}
$$

where z is a periodic point of period k, ρ_{k} is its multiplier, and

$$
z^{\prime}=\frac{d z}{d c}=\frac{\partial f_{c}^{\circ k}}{\partial c}(z)\left(1-\rho_{k}(c)\right)^{-1}
$$

How to compute critical points? (joint with A. Belova)

$$
\begin{array}{r}
\frac{d \rho_{k}}{d c}=2^{k}\left[z^{\prime} \prod_{i=1}^{k-1} f_{c}^{\circ i}(z)+z \sum_{i=1}^{k-1}\left(\frac{d f_{c}^{\circ i}(z)}{d c} \prod_{\substack{j=1 \\
j \neq i}}^{k-1} f_{c}^{\circ j}(z)\right]\right. \\
=2^{k}\left(\sum_{i=0}^{k-1} z_{i}^{\prime} \prod_{0 \leq j<k, j \neq i}^{k-1} z_{j}\right)
\end{array}
$$

where z is a periodic point of period k, ρ_{k} is its multiplier, and

$$
z^{\prime}=\frac{d z}{d c}=\frac{\partial f_{c}^{\circ k}}{\partial c}(z)\left(1-\rho_{k}(c)\right)^{-1}
$$

Idea: use the 3-dimensional Newton's method for the system

$$
\begin{cases}f_{c}^{\circ k}(z)-z & =0 \tag{1}\\ z^{\prime}-\frac{\partial f_{c}^{\circ k}}{\partial c}(z)\left(1-\frac{\partial f_{c}^{\circ k}}{\partial z}(z)\right)^{-1} & =0 \\ \frac{d \rho_{k}}{d c} & =0\end{cases}
$$

with three unknowns c, z, z^{\prime}.

Critical points of the multiplier maps $\rho_{\mathcal{O}}, \quad|\mathcal{O}|=4$

Number of critical points $=6$

Critical points of the multiplier maps $\rho_{\mathcal{O}},|\mathcal{O}|=5$

Number of critical points $=20$

Critical points of the multiplier maps $\rho_{\mathcal{O}},|\mathcal{O}|=6$

Number of critical points $=38$

When is $c=0$ a critical point of $\rho_{\mathcal{O}}$?

When $c=0$, and $\mathcal{O}=\left\langle z_{0}, \ldots, z_{k-1}\right\rangle$ is a periodic orbit of f_{0},

$$
\rho_{\mathcal{O}}^{\prime}(0)=-2^{k} \sum_{j=0}^{k-1} z_{j}^{-1}
$$

k	6	12	18	20	21	24	30
z_{0}	$\mathrm{e}^{2 \pi i / 9}$	$\mathrm{e}^{2 \pi i / 45}$	$\mathrm{e}^{2 \pi i / 27}$	$\mathrm{e}^{2 \pi i / 25}$	$\mathrm{e}^{2 \pi i / 49}$	$\mathrm{e}^{2 \pi i / 153}$	$\mathrm{e}^{2 \pi i / 99}$

Table: The list of all periods $k \leq 30$, for which there exists a multiplier map $\rho_{\mathcal{O}}$ with a critical point at $c=0$. (z_{0} is a corresponding periodic point.)

Lemma: For every $k \in \mathbb{N}$, the point $z_{k}=\exp \left(2 \pi i / 3^{k+1}\right)$ belongs to a periodic orbit \mathcal{O}_{k} of period $n_{k}=2 \cdot 3^{k}$ for the polynomial $f_{0}(z)=z^{2}$, and $\rho_{\mathcal{O}_{k}}^{\prime}(0)=0$.

Critical points of the multiplier maps $\rho_{\mathcal{O}},|\mathcal{O}|=7$

Number of critical points $=102$

Critical points of the multiplier maps $\rho_{\mathcal{O}},|\mathcal{O}|=8$

Number of critical points $=198$

Equidistribution of critical points of the multipliers

For any $s \in \mathbb{C}$ and any $k \in \mathbb{N}$,

- $X_{s, k}:=\left\{c \in \mathbb{C} \mid \rho_{\mathcal{O}}^{\prime}(c)=s\right.$, for some periodic orbit $\left.\mathcal{O}\right\}$. (Points in $X_{s, k}$ are counted with multiplicity.)

$$
\nu_{s, k}:=\frac{1}{\# X_{s, k}} \sum_{c \in X_{s, k}} \delta_{c}
$$

Equidistribution Theorem (Firsova, G.): For every sequence of complex numbers $\left\{s_{k}\right\}_{k \in \mathbb{N}}$, such that

$$
\limsup _{k \rightarrow+\infty} \frac{1}{k} \log \left|s_{k}\right| \leq \log 2
$$

the sequence of measures $\left\{\nu_{s_{k}, k}\right\}_{k \in \mathbb{N}}$ converges to $\mu_{\text {bif }}$ in the weak sense of measures on \mathbb{C}, as $k \rightarrow \infty$.

Related results for quadratic polynomials

Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_{0} \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_{\mathcal{O}}(c)=\rho_{0}$, for some \mathcal{O} of period k, equidistributes on the boundary of \mathbb{M}, as $k \rightarrow \infty$.

Related results for quadratic polynomials

Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_{0} \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_{\mathcal{O}}(c)=\rho_{0}$, for some \mathcal{O} of period k, equidistributes on the boundary of \mathbb{M}, as $k \rightarrow \infty$.

- $\mathcal{X} \subset \mathbb{C}$ is the accumulation set of critical points of the multipliers.
Theorem (Firsova, G.): The accumulation set \mathcal{X} is bounded, connected and contains the Mandelbrot set \mathbb{M}. Furthermore, the set $\mathcal{X} \backslash \mathbb{M}$ is nonempty and has a nonempty interior, and every critical point of any multiplier is in \mathcal{X}.

The accumulation set \mathcal{X}

Equidistribution: Idea of the proof

Step 1: For each measure ν_{k}, construct a potential (a subharmonic function) $u_{k}: \mathbb{C} \rightarrow[-\infty,+\infty)$, such that

$$
\Delta u_{k}=\nu_{k} .
$$

Step 2: Then convergence $u_{k} \rightarrow G_{\mathbb{M}}$ in $L_{\text {loc }}^{1}$ as $k \rightarrow \infty$ implies weak convergence of measures $\nu_{k} \rightarrow \mu_{\text {bif }}$.

Equidistribution: Idea of the proof

Step 1: For each measure ν_{k}, construct a potential (a subharmonic function) $u_{k}: \mathbb{C} \rightarrow[-\infty,+\infty)$, such that

$$
\Delta u_{k}=\nu_{k} .
$$

Step 2: Then convergence $u_{k} \rightarrow G_{\mathbb{M}}$ in $L_{\text {loc }}^{1}$ as $k \rightarrow \infty$ implies weak convergence of measures $\nu_{k} \rightarrow \mu_{\text {bif }}$.
Lemma (Buff, Gauthier.): Any subharmonic function $u: \mathbb{C} \rightarrow[-\infty,+\infty)$ which coincides with $G_{\mathbb{M}}$ outside \mathbb{M}, coincides with $G_{\mathbb{M}}$ everywhere.

Potentials

$$
\tilde{S}_{k}(c, s):=\prod_{\mathcal{O}(c, \mathcal{O}) \in P_{k}}\left(s-\rho_{k}^{\prime}\left(f_{c}, \mathcal{O}\right)\right)
$$

\tilde{S}_{k} is a rational map in c with simple poles at primitive parabolic c.

$$
\begin{gathered}
C_{k}(c):=\prod_{\tilde{c} \in \tilde{\mathcal{P}}_{k}}(c-\tilde{c}) . \\
S_{k}(c, s)=C_{k}(c) \tilde{S}_{k}(c, s) \quad-\text { polynomials in } c \text { and } s .
\end{gathered}
$$

Lemma: $S_{k}(c, s)=0$, iff $\rho_{k}^{\prime}\left(f_{c}, \mathcal{O}\right)=s$, for some k-cycle \mathcal{O} of f_{c}.

Potentials

$$
\tilde{S}_{k}(c, s):=\prod_{\mathcal{O}(c, \mathcal{O}) \in P_{k}}\left(s-\rho_{k}^{\prime}\left(f_{c}, \mathcal{O}\right)\right)
$$

\tilde{S}_{k} is a rational map in c with simple poles at primitive parabolic c.

$$
\begin{gathered}
C_{k}(c):=\prod_{\tilde{c} \in \tilde{\mathcal{P}}_{k}}(c-\tilde{c}) . \\
S_{k}(c, s)=C_{k}(c) \tilde{S}_{k}(c, s) \quad-\text { polynomials in } c \text { and } s .
\end{gathered}
$$

Lemma: $S_{k}(c, s)=0$, iff $\rho_{k}^{\prime}\left(f_{c}, \mathcal{O}\right)=s$, for some k-cycle \mathcal{O} of f_{c}.
For all $s \in \mathbb{C}$, define the potentials

$$
u_{s, k}(c):=\frac{1}{\operatorname{deg}_{c} S_{k}} \log \left|S_{k}(c, s)\right|=\frac{1}{\operatorname{deg}_{c} S_{k}}\left[\log \left|\tilde{S}_{k}(c, s)\right|+\log \left|C_{k}(c)\right|\right] .
$$

Roots of the multiplier maps in $\mathbb{C} \backslash \mathbb{M}$

The root of the multiplier of a periodic orbit \mathcal{O} :

$$
g_{\mathcal{O}}(c):=\left[\rho_{\mathcal{O}}(c)\right]^{1 /|\mathcal{O}|} .
$$

$g_{\mathcal{O}}$ is holomorphic on the double-cover of $\mathbb{C} \backslash \mathbb{M}$. The family $\left\{g_{\mathcal{O}}\right\}$ is normal.

Roots of the multiplier maps in $\mathbb{C} \backslash \mathbb{M}$

The root of the multiplier of a periodic orbit \mathcal{O} :

$$
g_{\mathcal{O}}(c):=\left[\rho_{\mathcal{O}}(c)\right]^{1 /|\mathcal{O}|} .
$$

$g_{\mathcal{O}}$ is holomorphic on the double-cover of $\mathbb{C} \backslash \mathbb{M}$. The family $\left\{g_{\mathcal{O}}\right\}$ is normal.

- Orb ${ }^{k}$ is the set of all period k cycles of f_{c}, for $c \in \mathbb{C} \backslash \mathbb{M}$. Lemma: For any $\delta>0$ and a compact subset $K \subset \mathbb{C} \backslash \mathbb{M}$, the following holds:

$$
\lim _{k \rightarrow \infty} \frac{\#\left\{\mathcal{O} \in O_{r b}^{k}:\left\|g_{\mathcal{O}}-2 \sqrt{\phi_{\mathbb{M}}}\right\|_{K}<\delta\right\}}{\# O r b^{k}}=1
$$

where
$\phi_{\mathbb{M}}: \mathbb{C} \backslash \mathbb{M} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}}$ is the conformal diffeomorphism, taking $(1 / 4,+\infty)$ to $(1,+\infty)$.

The sets \mathcal{Y}_{c}

- Orb_{c}^{+}is the set of all repelling periodic orbits of f_{c}.
- For every $\mathcal{O} \in \operatorname{Orb}_{c_{0}}^{+}$, the function

$$
\nu_{\mathcal{O}}(c):=\frac{\rho_{\mathcal{O}}^{\prime}(c)}{|\mathcal{O}| \rho_{\mathcal{O}}(c)}=\left[\log g_{\mathcal{O}}(c)\right]^{\prime}
$$

is defined and analytic around $c=c_{0}$.

- For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_{c} \subset \mathbb{C}$, defined by

$$
\mathcal{Y}_{c}:=\overline{\left\{\nu_{\mathcal{O}}(c) \mid \mathcal{O} \in \operatorname{Orb}_{c}^{+}\right\}} .
$$

The sets \mathcal{Y}_{c}

- Orb_{c}^{+}is the set of all repelling periodic orbits of f_{c}.
- For every $\mathcal{O} \in \operatorname{Orb}_{c_{0}}^{+}$, the function

$$
\nu_{\mathcal{O}}(c):=\frac{\rho_{\mathcal{O}}^{\prime}(c)}{|\mathcal{O}| \rho_{\mathcal{O}}(c)}=\left[\log g_{\mathcal{O}}(c)\right]^{\prime}
$$

is defined and analytic around $c=c_{0}$.

- For each $c \in \mathbb{C}$, we consider the set $\mathcal{Y}_{c} \subset \mathbb{C}$, defined by

$$
\mathcal{Y}_{c}:=\overline{\left\{\nu_{\mathcal{O}}(c) \mid \mathcal{O} \in \operatorname{Orb}_{c}^{+}\right\}} .
$$

Theorem (Firsova, G.): The following two properties hold:
(i) For every parameter $c \in \mathbb{C} \backslash\{-2\}$, the set \mathcal{Y}_{c} is convex; for $c=-2$, the set \mathcal{Y}_{-2} is the union of a convex set and the point $-\frac{1}{6}$.
(ii) For every parameter $c \in \mathbb{C} \backslash \mathbb{M}$, the set \mathcal{Y}_{c} is bounded. A parameter $c \in \mathbb{C} \backslash \mathbb{M}$ belongs to \mathcal{X}, if and only if $0 \in \mathcal{Y}_{\underline{c}}$.

Critical points of the Hausdorff dimension function

Hausdorff dimension function: $\delta(c):=\operatorname{dim}_{H}\left(J_{C}\right)$
Theorem (Ruelle): The function δ is real-analytic in each hyperbolic component (including the complement of \mathbb{M}).

Theorem (Y. M. He, H. Nie): (Version for the quadratic family) If $c \in \mathbb{C}$ is a hyperbolic parameter and $0 \notin \mathcal{Y}_{c}$, then c is not a critical point of the function δ.

Corollary: The Hausdorff dimension function δ has no critical points in $\mathbb{C} \backslash \mathcal{X}$.

Proof of (i): Averaging Lemma

Averaging Lemma: Let $\mathcal{O}_{1}, \mathcal{O}_{2}$ be two distinct non-exceptional repelling periodic orbits of f_{c}. Then for any $t \in[0,1]$, there exists a sequence of periodic orbits $\mathcal{O}_{3}, \mathcal{O}_{4}, \ldots$ of f_{c}, such that

$$
g_{\mathcal{O}_{j}} \rightarrow g_{\mathcal{O}_{1}}^{t} g_{\mathcal{O}_{2}}^{1-t}, \quad \text { and } \quad \nu_{\mathcal{O}_{j}} \rightarrow t \nu_{\mathcal{O}_{1}}+(1-t) \nu_{\mathcal{O}_{2}}
$$

uniformly on a neighborhood of c for appropriate branches of the powers.

$\mathbb{M} \subset \mathcal{X}$

- $F_{k}(c):=f_{c}^{\circ(k-1)}(c)=f_{c}^{\circ k}(0)$.

Then $F_{k}(c)$ is the free term of the polynomial $f_{c}^{\circ k}(z)$, hence

$$
F_{k}(c)=2^{-2^{k}} \prod_{m \in \mathbb{N}, m \mid k} \prod_{\mathcal{O} \in \mathcal{O r b} c_{c}^{m}} \rho_{\mathcal{O}}(c)
$$

where the product is taken over all $m \in \mathbb{N}$, such that m divides k and over all periodic orbits $\mathcal{O} \in \operatorname{Orb}_{c}^{m}$.

$$
\begin{equation*}
\frac{F_{k}^{\prime}(c)}{k F_{k}(c)}=\sum_{m \in \mathbb{N}, m \mid k} \sum_{\mathcal{O} \in O r b_{c}^{m}} \frac{m}{k} \nu_{\mathcal{O}}(c) \rightarrow 0 \tag{2}
\end{equation*}
$$

as $k \rightarrow \infty$ over an appropriate subsequence, provided that $c \in \operatorname{int}(\mathbb{M})$ is not parabolic or critically periodic.

Idea: $0 \notin \mathcal{Y}_{c}$ and Averaging Lemma \Longrightarrow no convergence in (2).

