On Transcendence of Numbers Related to Sturmian and Arnoux-Rauzy Words

P. Kebis, F. Luca, J. Ouaknine, A. Scoones and J. Worrell

MIR@W, March 2024

A real number is **normal** in base *b* if for all *n*, all length-*n* factors appear with asymptotic frequency $\frac{1}{b^n}$ in its infinite *b*-ary expansion

A real number is **normal** in base *b* if for all *n*, all length-*n* factors appear with asymptotic frequency $\frac{1}{b^n}$ in its infinite *b*-ary expansion

E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. *Rend. Circ. Mat. Palermo*, 27 (1909).

E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. *C.R. Acad. Sci. Paris*, 230 (1950).

A real number is **normal** in base *b* if for all *n*, all length-*n* factors appear with asymptotic frequency $\frac{1}{b^n}$ in its infinite *b*-ary expansion

E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. *Rend. Circ. Mat. Palermo*, 27 (1909).

E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. *C.R. Acad. Sci. Paris*, 230 (1950).

Theorem (Borel 1909)

Almost every number in [0,1] is normal.

• Champernowne (1933): normal in base-10

 $0.1234567891011121314\ldots$

• Champernowne (1933): normal in base-10

0.1234567891011121314...

 Borel (1950): does decimal expansion of √2 have infinitely many 5's? Is it normal?

 $\sqrt{2} = 1.41421356237309504880168872420$

• Champernowne (1933): normal in base-10

```
0.1234567891011121314 . . .
```

 Borel (1950): does decimal expansion of √2 have infinitely many 5's? Is it normal?

 $\sqrt{2} = 1.41421356237309504880168872420$

Conjecture (Borel 1950)

Let x be a real irrational algebraic number and $b \ge 2$ a positive integer. Then x is normal in base b.

If the base-b expansion of a real irrational number x is "simple" then x is transcendental.

If the base-b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base-b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

If the base-b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base-b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)

The base-b expansion of an irrational algebraic number cannot be generated by a finite automaton.

If the base-b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base-b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)

The base-b expansion of an irrational algebraic number cannot be generated by a finite automaton.

Cobham's Second Conjecture (1968)

The base-*b* expansion of an algebraic number cannot be generated by a morphism of exponential growth.

Tag Machines (Cobham 1968)

- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A \rightarrow A^*$ morphism, prolongable on *a*,
- $\varphi: A \to B^*$ letter-to-letter morphism.

Tag Machines (Cobham 1968)

- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A \rightarrow A^*$ morphism, prolongable on a,
- $\varphi: A \to B^*$ letter-to-letter morphism.

The sequence of finite binary words

$$F_0 = 0, F_1 = 01, F_2 = 010, F_2 = 01001, \dots$$

satisfying recurrence

$$F_n = F_{n-1}F_{n-2} \quad (n \ge 2)$$

The sequence of finite binary words

$$F_0 = 0, F_1 = 01, F_2 = 010, F_2 = 01001, \dots$$

satisfying recurrence

$$F_n = F_{n-1}F_{n-2} \quad (n \ge 2)$$

Converges to infinite Fibonacci word

Example: Fibonacci Word

• Fibonacci word is **morphic**: $F_{\infty} = \lim_{n \to \infty} \sigma^n(0)$, where $\sigma : \{0, 1\}^* \to \{0, 1\}^*$ is given by $\sigma(0) = 01$ and $\sigma(1) = 0$.

Example: Fibonacci Word

- Fibonacci word is **morphic**: $F_{\infty} = \lim_{n \to \infty} \sigma^n(0)$, where $\sigma : \{0, 1\}^* \to \{0, 1\}^*$ is given by $\sigma(0) = 01$ and $\sigma(1) = 0$.
- Incidence matrix

$$M_{\sigma} = egin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$$

has spectral radius > 1, so σ has **exponential growth**.

Example: Fibonacci Word

- Fibonacci word is **morphic**: $F_{\infty} = \lim_{n \to \infty} \sigma^n(0)$, where $\sigma : \{0, 1\}^* \to \{0, 1\}^*$ is given by $\sigma(0) = 01$ and $\sigma(1) = 0$.
- Incidence matrix

$$M_{\sigma} = egin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$$

has spectral radius > 1, so σ has **exponential growth**.

Theorem (Danilov 1972)

Let \mathbf{u} be the Fibonacci word. Then for all integers $b \ge 2$ the number

$$S_b(\boldsymbol{u}) := \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$

is transcendental.

• The Fibonacci word has subword complexity p(n) = n + 1 for all *n* and is thereby **Sturmian**.

- The Fibonacci word has subword complexity p(n) = n + 1 for all *n* and is thereby **Sturmian**.
- A word with subword complexity p(n) = n for some n is ultimately periodic.

- The Fibonacci word has subword complexity p(n) = n + 1 for all *n* and is thereby **Sturmian**.
- A word with subword complexity p(n) = n for some n is ultimately periodic.
- Given θ ∈ [0, 1), consider rotation map R_θ : [0, 1) → [0, 1), defined by R_θ(x) = (x + θ) mod 1.

- The Fibonacci word has subword complexity p(n) = n + 1 for all *n* and is thereby **Sturmian**.
- A word with subword complexity p(n) = n for some n is ultimately periodic.
- Given $\theta \in [0, 1)$, consider rotation map $R_{\theta} : [0, 1) \to [0, 1)$, defined by $R_{\theta}(x) = (x + \theta) \mod 1$. The θ -coding of $x \in [0, 1)$ is the sequence $(x_n)_{n=0}^{\infty}$, where

$$x_n := \begin{cases} 1 & \text{if } R_{\theta}^n(x) \in [0, \theta) \\ 0 & \text{otherwise} \end{cases}$$

- The Fibonacci word has subword complexity p(n) = n + 1 for all *n* and is thereby **Sturmian**.
- A word with subword complexity p(n) = n for some n is ultimately periodic.
- Given $\theta \in [0, 1)$, consider rotation map $R_{\theta} : [0, 1) \to [0, 1)$, defined by $R_{\theta}(x) = (x + \theta) \mod 1$. The θ -coding of $x \in [0, 1)$ is the sequence $(x_n)_{n=0}^{\infty}$, where

$$x_n := \begin{cases} 1 & \text{if } R_{\theta}^n(x) \in [0, \theta) \\ 0 & \text{otherwise} \end{cases}$$

• Sequence is Sturmian of **slope** θ iff it is coding of some x

Let $\Sigma = \{0, \dots, k-1\}$ for some $k \ge 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity p(n) = (k-1)n + 1
- for each *n* there is one left-special and one right-special factor of length *n*.

Let $\Sigma = \{0, \dots, k-1\}$ for some $k \ge 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity p(n) = (k-1)n + 1
- for each *n* there is one left-special and one right-special factor of length *n*.

Example

The **Tribonacci word** is the limit of the infinite sequence defined by recurrence

$$T_n = T_{n-1}T_{n-2}T_{n-3}$$
 $T_0 = 0, T_1 = 01, T_2 = 0102$

Let $\Sigma = \{0, \dots, k-1\}$ for some $k \ge 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity p(n) = (k-1)n + 1
- for each *n* there is one left-special and one right-special factor of length *n*.

Example

The **Tribonacci word** is the limit of the infinite sequence defined by recurrence

$$T_n = T_{n-1}T_{n-2}T_{n-3}$$
 $T_0 = 0, T_1 = 01, T_2 = 0102$

Also generated by the morphism $\sigma(0) = 01$, $\sigma(1) = 02$, $\sigma(2) = 0$.

Taxonomy of Simple Words

Theorem (Ferenczi and Mauduit 1997)

Let $b \ge 2$ be an integer and let $\mathbf{u} \in \{0, 1, \dots, b-1\}^{\omega}$ be a Sturmian word (more generally, an Arnoux-Rauzy word). Then $S_b(\mathbf{u}) := \sum_{n=0}^{\infty} \frac{u_n}{b^n}$ is transcendental.

The **Diophantine exponent** of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form UV^{α} , for $\alpha \geq 1$, satisfying

$$\frac{|UV^{\alpha}|}{|UV|} \ge \rho$$

The **Diophantine exponent** of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form UV^{α} , for $\alpha \geq 1$, satisfying

$$\frac{|UV^{\alpha}|}{|UV|} \ge \rho$$

• We have $1 \leq \mathrm{Dio}({\it u}) \leq \infty$ for all ${\it u}$

The **Diophantine exponent** of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form UV^{α} , for $\alpha \geq 1$, satisfying

$$\frac{|UV^{\alpha}|}{|UV|} \ge \rho$$

- We have $1 \leq \mathrm{Dio}({\it u}) \leq \infty$ for all ${\it u}$
- Eventually periodic words have infinite Diophantine exponent.

The **Diophantine exponent** of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form UV^{α} , for $\alpha \geq 1$, satisfying

$$\frac{|UV^{\alpha}|}{|UV|} \ge \rho$$

- We have $1 \leq \mathrm{Dio}({\it u}) \leq \infty$ for all ${\it u}$
- Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski-Bugeaud-Luca (reformulated))

For an integer $b \ge 2$ and sequence $\mathbf{u} \in \{0, ..., b-1\}$, if $\text{Dio}(\mathbf{u}) > 1$ then $S_b(\mathbf{u})$ is either rational or transcendental.

• [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent > 2.

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent > 2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent > 1.

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent > 2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent > 1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\liminf_n \frac{p(n)}{n} < \infty$, have Diophantine exponent > 1.

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent > 2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent > 1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\liminf_n \frac{p(n)}{n} < \infty$, have Diophantine exponent > 1.
- [Adamczewski, Cassaigne, Le Gonidec 2020] shows that words generated by morphims of exponential growth have Diophantine exponent > 1.
Proposition

If α is rational then there exists C > 0 that every rational number a/b different from α satisfies $|\alpha - \frac{a}{b}| > \frac{C}{b}$.

Proposition

If α is rational then there exists C > 0 that every rational number a/b different from α satisfies $|\alpha - \frac{a}{b}| > \frac{C}{b}$.

Theorem (Liouville)

Let α be irrational algebraic number of degree d. There exists C > 0 such that $|\alpha - \frac{a}{b}| > \frac{C}{b^d}$ for all a, b.

Proposition

If α is rational then there exists C > 0 that every rational number a/b different from α satisfies $|\alpha - \frac{a}{b}| > \frac{C}{b}$.

Theorem (Liouville)

Let α be irrational algebraic number of degree d. There exists C > 0 such that $|\alpha - \frac{a}{b}| > \frac{C}{b^d}$ for all a, b.

Theorem (Thue-Siegel-Roth)

Let α be irrational algebraic and $\varepsilon > 0$. There exists C > 0 such that $|\alpha - \frac{a}{b}| > \frac{C}{b^{2+\varepsilon}}$ for all a, b.

Diophantine Approximation

Theorem (Schlickewei 75)

Let $m \ge 2$ be an integer, ε a positive real, and S a finite set of prime numbers. Let L_1, \ldots, L_m be linearly independent linear forms with real algebraic coefficients. Then the set of solutions $\mathbf{x} \in \mathbb{Z}^m$ of the inequality

$$\left(\prod_{i=1}^m \prod_{p \in S} |x_i|_p\right) \cdot \prod_{i=1}^m |L_i(\boldsymbol{x})| \leq (\max\{|x_1|, \dots, |x_m|\})^{-\epsilon}$$

are contained in finitely many proper linear subspaces of \mathbb{Q}^m .

• Assume
$$\alpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

9 Assume
$$\alpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

Perenzci and Mauduit's condition yields sequence of good rational approximants U_nV^ω_n, giving infinite sequence of points in Z² on which linear form L(x₁, x₂) = αx₁ − x₂ is "small"

9 Assume
$$lpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

- Perenzci and Mauduit's condition yields sequence of good rational approximants U_nV^ω_n, giving infinite sequence of points in Z² on which linear form L(x₁, x₂) = αx₁ − x₂ is "small"
- Apply p-adic Thue-Siegel-Roth Theorem to obtain a contradiction.

9 Assume
$$\alpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

- Perenzci and Mauduit's condition yields sequence of good rational approximants U_nV^ω_n, giving infinite sequence of points in Z² on which linear form L(x₁, x₂) = αx₁ − x₂ is "small"
- Apply *p*-adic Thue-Siegel-Roth Theorem to obtain a contradiction.
- Weaker condition Dio(*u*) > 1 yields infinite sequence of points in Z³ on which linear form
 L(x₁, x₂, x₃) = αx₁ − αx₂ − x₃ is "small"

9 Assume
$$lpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

- Perenzci and Mauduit's condition yields sequence of good rational approximants U_nV^ω_n, giving infinite sequence of points in Z² on which linear form L(x₁, x₂) = αx₁ − x₂ is "small"
- Apply p-adic Thue-Siegel-Roth Theorem to obtain a contradiction.
- Weaker condition Dio(*u*) > 1 yields infinite sequence of points in Z³ on which linear form
 L(x₁, x₂, x₃) = αx₁ − αx₂ − x₃ is "small"
- **(**) Apply Subspace Theorem to conclude that α is **rational**

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. *Acta. Math. Acad. Sci. Hungar.* **8** (1957).

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. *Acta. Math. Acad. Sci. Hungar.* **8** (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let β be a Pisot or a Salem number and let $\text{Dio}(\boldsymbol{u}) > 1$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

A. Rényi. Representations for real numbers and their ergodic properties. *Acta. Math. Acad. Sci. Hungar.* **8** (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let β be a Pisot or a Salem number and let $\text{Dio}(\boldsymbol{u}) > 1$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem (Adamczewski and Bugeaud 2007b)

Let β be an algebraic integer with $|\beta| > 1$. If $\text{Dio}(\boldsymbol{u}) > \frac{\log M(1)}{\log |\beta|}$ Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem

Let β be algebraic with $|\beta| > 1$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\{1, S_\beta(\mathbf{u}_1), \ldots, S_\beta(\mathbf{u}_k)\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Theorem

Let β be algebraic with $|\beta| > 1$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\{1, S_\beta(\mathbf{u}_1), \ldots, S_\beta(\mathbf{u}_k)\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta| > 1$. If **u** is Sturmian then $S_{\beta}(\mathbf{u})$ is transcendental.

Theorem

Let β be algebraic with $|\beta| > 1$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\{1, S_\beta(\mathbf{u}_1), \ldots, S_\beta(\mathbf{u}_k)\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta| > 1$. If **u** is Sturmian then $S_{\beta}(\mathbf{u})$ is transcendental.

Theorem

Let **u** be the d-bonacci sequence. Then for any algebraic number β with $|\beta| > 1$ the sum $S_{\beta}(\mathbf{u}) = \sum_{n=0}^{\infty} \frac{u_n}{\beta^n}$ is transcendental.

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

 $F_{\infty} := 0100101001001010010100101001010...$ $F_{\infty}^{(5)} := 0100100101001001001001001001...$

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

 $F_{\infty} := 0100101001001010010100101001010...$ $F_{\infty}^{(5)} := 0100100101001001001001001001...$

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

 $F_{\infty} := 0100101001001010010100101001010...$ $F_{\infty}^{(5)} := 0100100101001001001001001001...$

• Mismatches come in consecutive symmetric pairs

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

 $F_{\infty} := 0100101001001010010100101001010...$ $F_{\infty}^{(5)} := 0100100101001001001001001001...$

• Mismatches come in consecutive symmetric pairs

• Gaps between these pairs expand with n

$\begin{aligned} \mathcal{T}_\infty := &01020100102010\textbf{102}0\textbf{102}01020100102010\textbf{102}0\textbf{100}0102\ldots \\ \mathcal{T}_\infty^{(13)} := &01020100102010\textbf{201}0\textbf{102}0\textbf{100}10\textbf{201}0102010\textbf{0102}0\textbf{100}0\textbf{100}0\textbf{1$

 $\begin{aligned} \mathcal{T}_{\infty} := &01020100102010\mathbf{1020100102}01020100102010\mathbf{102010}0102\ldots \\ \mathcal{T}_{\infty}^{(13)} := &01020100102010\mathbf{20100102010010201001020100102010010201} \\ \end{aligned}$

As before, there is a finite alphabet of "mismatches":

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

 $\begin{aligned} \mathcal{T}_{\infty} := &01020100102010\mathbf{1020100102}01020100102010\mathbf{102010}0102\ldots \\ \mathcal{T}_{\infty}^{(13)} := &01020100102010\mathbf{20100102010010201001020100102010010201} \\ \end{aligned}$

As before, there is a finite alphabet of "mismatches":

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

Expanding gaps between groups of mismatches

A sequence u is echoing if for all $\rho > 0$ and $\varepsilon > 0$ there exist d > 0 and sequences $\langle r_n \rangle_{n=0}^{\infty}$ and $\langle s_n \rangle_{n=0}^{\infty}$ of positive integers and $d \ge 2$ such that:

A sequence u is echoing if for all $\rho > 0$ and $\varepsilon > 0$ there exist d > 0 and sequences $\langle r_n \rangle_{n=0}^{\infty}$ and $\langle s_n \rangle_{n=0}^{\infty}$ of positive integers and $d \ge 2$ such that:

E1 $\langle r_n \rangle_{n=0}^{\infty}$ is unbounded and $s_n \geq \rho r_n$ for all *n*;

A sequence u is echoing if for all $\rho > 0$ and $\varepsilon > 0$ there exist d > 0 and sequences $\langle r_n \rangle_{n=0}^{\infty}$ and $\langle s_n \rangle_{n=0}^{\infty}$ of positive integers and $d \ge 2$ such that:

E1 $\langle r_n \rangle_{n=0}^{\infty}$ is unbounded and $s_n \geq \rho r_n$ for all *n*;

E2 the set of mismatches between strings $u_0 \ldots u_{s_n}$ and $u_{r_n} \ldots u_{r_n+s_n}$ is a contained in a union of at most d intervals of total length at most εs_n .

A sequence u is echoing if for all $\rho > 0$ and $\varepsilon > 0$ there exist d > 0 and sequences $\langle r_n \rangle_{n=0}^{\infty}$ and $\langle s_n \rangle_{n=0}^{\infty}$ of positive integers and $d \ge 2$ such that:

E1 $\langle r_n \rangle_{n=0}^{\infty}$ is unbounded and $s_n \geq \rho r_n$ for all *n*;

- E2 the set of mismatches between strings $u_0 \ldots u_{s_n}$ and $u_{r_n} \ldots u_{r_n+s_n}$ is a contained in a union of at most d intervals of total length at most εs_n .
- E3 the gaps between intervals expand with n.

A sequence u is echoing if for all $\rho > 0$ and $\varepsilon > 0$ there exist d > 0 and sequences $\langle r_n \rangle_{n=0}^{\infty}$ and $\langle s_n \rangle_{n=0}^{\infty}$ of positive integers and $d \ge 2$ such that:

E1 $\langle r_n \rangle_{n=0}^{\infty}$ is unbounded and $s_n \geq \rho r_n$ for all *n*;

- E2 the set of mismatches between strings $u_0 \ldots u_{s_n}$ and $u_{r_n} \ldots u_{r_n+s_n}$ is a contained in a union of at most d intervals of total length at most εs_n .
- E3 the gaps between intervals expand with n.

Use Subspace Theorem to show transcendence of $S_{\beta}(u)$ for u echoing.

"Are all irrational elements of the Cantor ternary set transcendental?"

K. Mahler, Some suggestions for further research, *Bull. Austral. Math. Soc.* 29 (1984).

Contracted Rotations

Given $0 < \lambda, \delta < 1$ such that $\lambda + \delta > 1$, map $f : I \to I$ given by $f(x) := \{\lambda x + \delta\}$ is a **contracted rotation** with **slope** λ and **offset** δ .

Rotation Number

Consider the limit set $C := \bigcap_{n=0}^{\infty} f^n(I)$. Then f has a **rotation number** θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \overline{C} is a Cantor set if θ is irrational.

Rotation Number

Consider the limit set $C := \bigcap_{n=0}^{\infty} f^n(I)$. Then f has a **rotation number** θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \overline{C} is a Cantor set if θ is irrational.

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \overline{C} other than 0 and 1 is transcendental.

Rotation Number

Consider the limit set $C := \bigcap_{n=0}^{\infty} f^n(I)$. Then f has a **rotation number** θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \overline{C} is a Cantor set if θ is irrational.

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \overline{C} other than 0 and 1 is transcendental.

• Generalises result of Bugeaud, Kim, Laurent, Nogueira, which had $\lambda^{-1} \in \mathbb{Z}$.

Application to LTI Reachability

Consider LTI system in \mathbb{R}^2 with

• Control polyhedron: $U := [0,1] \times \{0\}$

• Transition matrix
$$A := \frac{1}{b} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Application to LTI Reachability

Consider LTI system in \mathbb{R}^2 with

• Control polyhedron: $U := [0,1] \times \{0\}$

• Transition matrix
$$A := rac{1}{b} egin{pmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{pmatrix}$$

Does there exist a sequence of inputs $u_n \in U$ such that the orbit

$$x_{n+1} = Ax_n + u_n, \qquad x_0 = 0$$

reaches the halfspace $x \ge c$?

Application to LTI Reachability

Consider LTI system in \mathbb{R}^2 with

• Control polyhedron: $U := [0,1] \times \{0\}$

• Transition matrix
$$A := rac{1}{b} egin{pmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{pmatrix}$$

Does there exist a sequence of inputs $u_n \in U$ such that the orbit

$$x_{n+1} = Ax_n + u_n, \qquad x_0 = 0$$

reaches the halfspace $x \ge c$?

Determine whether $\sum_{n=0}^{\infty} u_n \frac{\cos(n\theta)}{b^n} \ge c$, where $u_n = 1$ if $\cos(n\theta) \ge 0$ and $u_n = 0$ otherwise.