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Theorem (Borel 1909)

Almost every number in [0, 1] is normal.
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Conjecture (Borel 1950)

Let x be a real irrational algebraic number and b > 2 a positive
integer. Then x is normal in base b.
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Conjectures with a Computational Aspect

If the base-b expansion of a real irrational number x is “simple”
then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base-b expansion of an irrational algebraic number cannot be
generated by a linear-time Turing machine.

Cobham'’s First Conjecture (1968)

The base-b expansion of an irrational algebraic number cannot be
generated by a finite automaton.

Cobham'’s Second Conjecture (1968)

The base-b expansion of an algebraic number cannot be generated
by a morphism of exponential growth.
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A finite work-tape alphabet,
B finite output-tape alphabet,
Start symbol a € A,

o : A— A* morphism, prolongable on a,

e 6 6 o6 o

@ : A — B* letter-to-letter morphism.

{ \

working a b a a ¢
output x y
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The sequence of finite binary words
Fo=0,F =01, F =010, f, = 01001,...
satisfying recurrence
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Converges to infinite Fibonacci word

F~ = 01001010010010100101001001010. ..
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Theorem (Danilov 1972)

Let u be the Fibonacci word. Then for all integers b > 2 the
number

u
Sb(u) = 72
n=0 b

is transcendental.
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Sturmian Words

@ The Fibonacci word has subword complexity p(n) = n+ 1 for
all n and is thereby Sturmian.

e A word with subword complexity p(n) = n for some n is
ultimately periodic.

@ Given 6 € [0, 1), consider rotation map Ry : [0,1) — [0, 1),
defined by Rp(x) = (x 4+ ) mod 1. The #-coding of x € [0, 1)
is the sequence (x,)22,, where

1 if Rj(x)€[0,0)
Xp = .
0 otherwise

@ Sequence is Sturmian of slope 6 iff it is coding of some x
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Arnoux-Rauzy Words

Let ¥ ={0,...,k — 1} for some k > 2. A sequence u € X is
Arnoux-Rauzy if

@ it is uniformly recurrent
@ it has subword complexity p(n) = (k —1)n+1

@ for each n there is one left-special and one right-special factor
of length n.

The Tribonacci word is the limit of the infinite sequence defined
by recurrence

To=Tn1TphoT, 3 To=0,T1 =01, T, = 0102

Also generated by the morphism ¢(0) = 01, o(1) = 02, o(2) = 0.

V




Taxonomy of Simple Words




Transcendence of Sturmian Words

Theorem (Ferenczi and Mauduit 1997)

Let b > 2 be an integer and let u € {0,1,...,b—1}* be a
Sturmian word (more generally, an Arnoux-Rauzy word). Then
Sp(u) =72 4= is transcendental.
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Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of u is the supremum of all real p
such that u has arbitrarily long prefixes of the form UV¢, for
a > 1, satisfying
juve|
UV

> p

@ We have 1 < Dio(u) < oo for all u

@ Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski-Bugeaud-Luca (reformulated))

For an integer b > 2 and sequence u € {0,...,b— 1}, if
Dio(u) > 1 then Sp(u) is either rational or transcendental.
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Approximation by Periodic Words

o [Ferenczi and Mauduit 1997] show that Sturmian words have
Diophantine exponent > 2.

o [Adamczewski, Bugeaud, Luca 04] show that automatic words
have Diophantine exponent > 1.

o [Adamczewski, Bugeaud, Luca 04] shows that sequences with

p(n)

linear subword complexity, i.e., liminf, < 00, have

Diophantine exponent > 1.

o [Adamczewski, Cassaigne, Le Gonidec 2020] shows that words
generated by morphims of exponential growth have
Diophantine exponent > 1.
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Approximation by Fractions

Proposition

If o is rational then there exists C > 0 that every rational number
a/b different from « satisfies oo — 5| > %.

Theorem (Liouville)

Let o be irrational algebraic number of degree d. There exists

C > 0 such that |a — 7| > b—cd for all a, b.

Theorem (Thue-Siegel-Roth)

Let «v be irrational algebraic and € > 0. There exists C > 0 such
that o — 3| > bﬁg for all a, b.




Diophantine Approximation

Theorem (Schlickewei 75)

Let m > 2 be an integer, € a positive real, and S a finite set of
prime numbers. Let Ly, ..., Ly be linearly independent linear forms
with real algebraic coefficients. Then the set of solutions x € Z™
of the inequality

TTIT le HIL ) < (max{]xal, .. [xml}) ™

i=1peS

are contained in finitely many proper linear subspaces of Q™.
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Number-Theoretic Part

@ Assume a = )7 { is algebraic

Ferenzci and Mauduit's condition yields sequence of good
rational approximants U, VY, giving infinite sequence of points
in Z2 on which linear form L(xi,x2) = ax; — xp is “small”

Apply p-adic Thue-Siegel-Roth Theorem to obtain a
contradiction.

Weaker condition Dio(u) > 1 yields infinite sequence of
points in Z3 on which linear form

L(x1,x2,x3) = axy — axp — x3 is "small”

Apply Subspace Theorem to conclude that « is rational
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Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers
and their ergodic properties. Acta. Math.
Acad. Sci. Hungar. 8 (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let B be a Pisot or a Salem number and let Dio(u) > 1. Then
S(u) either lies in Q(B) or is transcendental.

.

Theorem (Adamczewski and Bugeaud 2007b)

Let B be an algebraic integer with || > 1. If Dio(u) > £,
Then Sg(u) either lies in Q(3) or is transcendental.

A
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Our Main Results

Theorem

Let 5 be algebraic with || > 1. Let uy,...,uyx be Sturmian
sequences, all having the same slope and such that no sequence is
a tail of another. Then {1, Sg(u1),...,Sg(uk)} is linearly
independent over Q.

Corollary

Let 3 be algebraic with |3| > 1. If u is Sturmian then Sg(u) is
transcendental.

Theorem

Let u be the d-bonacci sequence. Then for any algebraic number
B with |3| > 1 the sum Sg(u) = >"7°, 55 is transcendental.
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Let (rn)52, be Fibonacci sequence and write F) for tail of
Fibonacci word after dropping first r, letters.

F.. :=01001010010010100101001001010. ..
F(®) :=01001001010010100100101001001 . . .

F~ :=01001010010010100101001001010010010100101001001 . ..
Fég) :=01001010010100100101001001010010100100101001010.. ..

@ Mismatches come in consecutive symmetric pairs

@ Gaps between these pairs expand with n
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Tribonacci Word

To :=010201001020101020100102010201001020101020100102. . .
T(13) :=010201001020102010010201010201001020100102010102. . .

As before, there is a finite alphabet of “mismatches”:
10 2 0 1 0 2 2 010
01 0 2 2 01 010 2

Expanding gaps between groups of mismatches
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Echoing Sequences

Definition

A sequence u is echoing if for all p > 0 and € > 0 there exist
d > 0 and sequences ()0 and (s,)7°, of positive integers and
d > 2 such that:

E1 (rn)S2, is unbounded and s, > pr, for all n;

E2 the set of mismatches between strings ug . .. us, and
U, ..U +s, IS a contained in a union of at most d intervals
of total length at most es,,.

E3 the gaps between intervals expand with n.

Use Subspace Theorem to show transcendence of Sg(u) for u
echoing.



Application to Dynamical Systems

“Are all irrational elements of the
Cantor ternary set transcendental?”

K. Mabhler, Some suggestions for further
research, Bull. Austral. Math. Soc. 29 (1984).




Contracted Rotations

Given 0 < A\,0 < 1suchthat A+ >1, map f:/ — [ given by
f(x) := {\x + 0} is a contracted rotation with slope \ and
offset J.

R /
0 |



Cantor Sets from Rotations

Rotation Number

Consider the limit set C := ()2, f"(/). Then f has a rotation
number 6 such that restriction of f to C is conjugate to the
rotation map Ry and C is a Cantor set if € is irrational.
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Cantor Sets from Rotations

Rotation Number

Consider the limit set C := ()2, f"(/). Then f has a rotation
number 6 such that restriction of f to C is conjugate to the
rotation map Ry and C is a Cantor set if € is irrational.

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every
element of the Cantor set C other than 0 and 1 is transcendental.

o Generalises result of Bugeaud, Kim, Laurent, Nogueira, which
had A~! € Z.
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Application to LTI Reachability

Consider LTI system in R? with

e Control polyhedron: U :=[0,1] x {0}

@ Transition matrix A := 1 (cosf —sind
" b \sinf cosf

Does there exist a sequence of inputs u, € U such that the orbit
Xnt1 = AXp + Up, xo =0
reaches the halfspace x > ¢?

Determine whether Y"0° ; uj, Cosb(,f'e) > ¢, where u, =1 if J

cos(nf) > 0 and u, = 0 otherwise.




