On Transcendence of Numbers Related to Sturmian and Arnoux-Rauzy Words

P. Kebis, F. Luca, J. Ouaknine, A. Scoones and J. Worrell

MIR@W, March 2024

Normal Numbers are Normal

A real number is normal in base b if for all n, all length- n factors appear with asymptotic frequency $\frac{1}{b^{n}}$ in its infinite b-ary expansion

Normal Numbers are Normal

A real number is normal in base b if for all n, all length- n factors appear with asymptotic frequency $\frac{1}{b^{n}}$ in its infinite b-ary expansion
E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo, 27 (1909).
E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. C.R. Acad. Sci. Paris, 230 (1950).

Normal Numbers are Normal

A real number is normal in base b if for all n, all length- n factors appear with asymptotic frequency $\frac{1}{b^{n}}$ in its infinite b-ary expansion
E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27 (1909).
E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. C.R. Acad. Sci. Paris, 230 (1950).

Theorem (Borel 1909)

Almost every number in $[0,1]$ is normal.

Specific Cases

- Champernowne (1933): normal in base-10

$$
0.1234567891011121314 \ldots
$$

Specific Cases

- Champernowne (1933): normal in base-10

$$
0.1234567891011121314 \ldots
$$

- Borel (1950): does decimal expansion of $\sqrt{2}$ have infinitely many 5's? Is it normal?

$$
\sqrt{2}=1.41421356237309504880168872420
$$

Specific Cases

- Champernowne (1933): normal in base-10

$$
0.1234567891011121314 \ldots
$$

- Borel (1950): does decimal expansion of $\sqrt{2}$ have infinitely many 5's? Is it normal?

$$
\sqrt{2}=1.41421356237309504880168872420
$$

Conjecture (Borel 1950)

Let x be a real irrational algebraic number and $b \geq 2$ a positive integer. Then x is normal in base b.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)
The base- b expansion of an irrational algebraic number cannot be generated by a finite automaton.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)

The base- b expansion of an irrational algebraic number cannot be generated by a finite automaton.

Cobham's Second Conjecture (1968)

The base- b expansion of an algebraic number cannot be generated by a morphism of exponential growth.

- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A \rightarrow A^{*}$ morphism, prolongable on a,
- $\varphi: A \rightarrow B^{*}$ letter-to-letter morphism.
- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A \rightarrow A^{*}$ morphism, prolongable on a,
- $\varphi: A \rightarrow B^{*}$ letter-to-letter morphism.

Example: The Fibonacci Word

The sequence of finite binary words

$$
F_{0}=0, F_{1}=01, F_{2}=010, F_{2}=01001, \ldots
$$

satisfying recurrence

$$
F_{n}=F_{n-1} F_{n-2} \quad(n \geq 2)
$$

Example: The Fibonacci Word

The sequence of finite binary words

$$
F_{0}=0, F_{1}=01, F_{2}=010, F_{2}=01001, \ldots
$$

satisfying recurrence

$$
F_{n}=F_{n-1} F_{n-2} \quad(n \geq 2)
$$

Converges to infinite Fibonacci word

$$
F_{\infty}=01001010010010100101001001010 \ldots
$$

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.
- Incidence matrix

$$
M_{\sigma}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has spectral radius >1, so σ has exponential growth.

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.
- Incidence matrix

$$
M_{\sigma}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has spectral radius >1, so σ has exponential growth.

Theorem (Danilov 1972)

Let \boldsymbol{u} be the Fibonacci word. Then for all integers $b \geq 2$ the number

$$
S_{b}(\boldsymbol{u}):=\sum_{n=0}^{\infty} \frac{u_{n}}{b^{n}}
$$

is transcendental.

Sturmian Words

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.

Sturmian Words

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta) \bmod 1$.
- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta) \bmod 1$. The θ-coding of $x \in[0,1)$ is the sequence $\left(x_{n}\right)_{n=0}^{\infty}$, where

$$
x_{n}:= \begin{cases}1 & \text { if } R_{\theta}^{n}(x) \in[0, \theta) \\ 0 & \text { otherwise }\end{cases}
$$

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta)$ mod 1 . The θ-coding of $x \in[0,1)$ is the sequence $\left(x_{n}\right)_{n=0}^{\infty}$, where

$$
x_{n}:= \begin{cases}1 & \text { if } R_{\theta}^{n}(x) \in[0, \theta) \\ 0 & \text { otherwise }\end{cases}
$$

- Sequence is Sturmian of slope θ iff it is coding of some x

Arnoux-Rauzy Words

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is
Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

Arnoux-Rauzy Words

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is
Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

Example

The Tribonacci word is the limit of the infinite sequence defined by recurrence

$$
T_{n}=T_{n-1} T_{n-2} T_{n-3} \quad T_{0}=0, T_{1}=01, T_{2}=0102
$$

Arnoux-Rauzy Words

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is
Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

Example

The Tribonacci word is the limit of the infinite sequence defined by recurrence

$$
T_{n}=T_{n-1} T_{n-2} T_{n-3} \quad T_{0}=0, T_{1}=01, T_{2}=0102
$$

Also generated by the morphism $\sigma(0)=01, \sigma(1)=02, \sigma(2)=0$.

Taxonomy of Simple Words

Transcendence of Sturmian Words

Theorem (Ferenczi and Mauduit 1997)

Let $b \geq 2$ be an integer and let $\boldsymbol{u} \in\{0,1, \ldots, b-1\}^{\omega}$ be a Sturmian word (more generally, an Arnoux-Rauzy word). Then $S_{b}(\boldsymbol{u}):=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is transcendental.

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}
- Eventually periodic words have infinite Diophantine exponent.

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}
- Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski-Bugeaud-Luca (reformulated))

For an integer $b \geq 2$ and sequence $\boldsymbol{u} \in\{0, \ldots, b-1\}$, if $\operatorname{Dio}(\boldsymbol{u})>1$ then $S_{b}(\boldsymbol{u})$ is either rational or transcendental.

Approximation by Periodic Words

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >2.

Approximation by Periodic Words

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.

Approximation by Periodic Words

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\lim _{\inf }^{n} \frac{p(n)}{n}<\infty$, have Diophantine exponent >1.

Approximation by Periodic Words

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >2.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\lim _{\inf }^{n} \frac{p(n)}{n}<\infty$, have Diophantine exponent >1.
- [Adamczewski, Cassaigne, Le Gonidec 2020] shows that words generated by morphims of exponential growth have Diophantine exponent >1.

Approximation by Fractions

Proposition

If α is rational then there exists $C>0$ that every rational number a / b different from α satisfies $\left|\alpha-\frac{a}{b}\right|>\frac{c}{b}$.

Approximation by Fractions

Proposition

If α is rational then there exists $C>0$ that every rational number a / b different from α satisfies $\left|\alpha-\frac{a}{b}\right|>\frac{c}{b}$.

Theorem (Liouville)

Let α be irrational algebraic number of degree d. There exists $C>0$ such that $\left|\alpha-\frac{a}{b}\right|>\frac{c}{b^{d}}$ for all a, b.

Approximation by Fractions

Proposition

If α is rational then there exists $C>0$ that every rational number a / b different from α satisfies $\left|\alpha-\frac{a}{b}\right|>\frac{c}{b}$.

Theorem (Liouville)

Let α be irrational algebraic number of degree d. There exists $C>0$ such that $\left|\alpha-\frac{a}{b}\right|>\frac{c}{b^{d}}$ for all a, b.

Theorem (Thue-Siegel-Roth)

Let α be irrational algebraic and $\varepsilon>0$. There exists $C>0$ such that $\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{2+\varepsilon}}$ for all a, b.

Diophantine Approximation

Theorem (Schlickewei 75)

Let $m \geq 2$ be an integer, ε a positive real, and S a finite set of prime numbers. Let L_{1}, \ldots, L_{m} be linearly independent linear forms with real algebraic coefficients. Then the set of solutions $\boldsymbol{x} \in \mathbb{Z}^{m}$ of the inequality

$$
\left(\prod_{i=1}^{m} \prod_{p \in S}\left|x_{i}\right|_{p}\right) \cdot \prod_{i=1}^{m}\left|L_{i}(\boldsymbol{x})\right| \leq\left(\max \left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}\right)^{-\varepsilon}
$$

are contained in finitely many proper linear subspaces of \mathbb{Q}^{m}.

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply p-adic Thue-Siegel-Roth Theorem to obtain a contradiction.

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply p-adic Thue-Siegel-Roth Theorem to obtain a contradiction.
(9) Weaker condition $\operatorname{Dio}(\boldsymbol{u})>1$ yields infinite sequence of points in \mathbb{Z}^{3} on which linear form $L\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}-\alpha x_{2}-x_{3}$ is "small"

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply p-adic Thue-Siegel-Roth Theorem to obtain a contradiction.
(9) Weaker condition $\operatorname{Dio}(\boldsymbol{u})>1$ yields infinite sequence of points in \mathbb{Z}^{3} on which linear form $L\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}-\alpha x_{2}-x_{3}$ is "small"
(6) Apply Subspace Theorem to conclude that α is rational

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

Theorem (Adamczewski and Bugeaud 2007a)
Let β be a Pisot or a Salem number and let $\operatorname{Dio}(\boldsymbol{u})>1$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let β be a Pisot or a Salem number and let $\operatorname{Dio}(\boldsymbol{u})>1$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem (Adamczewski and Bugeaud 2007b)

Let β be an algebraic integer with $|\beta|>1$. If $\operatorname{Dio}(\boldsymbol{u})>\frac{\log M(\beta)}{\log |\beta|}$.
Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Our Main Results

Theorem

Let β be algebraic with $|\beta|>1$. Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}_{1}\right), \ldots, S_{\beta}\left(\boldsymbol{u}_{k}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Our Main Results

Theorem

Let β be algebraic with $|\beta|>1$. Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}_{1}\right), \ldots, S_{\beta}\left(\boldsymbol{u}_{k}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta|>1$. If \boldsymbol{u} is Sturmian then $S_{\beta}(\boldsymbol{u})$ is transcendental.

Our Main Results

Theorem

Let β be algebraic with $|\beta|>1$. Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}_{1}\right), \ldots, S_{\beta}\left(\boldsymbol{u}_{k}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta|>1$. If \boldsymbol{u} is Sturmian then $S_{\beta}(\boldsymbol{u})$ is transcendental.

Theorem

Let \boldsymbol{u} be the d-bonacci sequence. Then for any algebraic number β with $|\beta|>1$ the sum $S_{\beta}(\boldsymbol{u})=\sum_{n=0}^{\infty} \frac{U_{n}}{\beta^{n}}$ is transcendental.

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=01001001010010100100101001001 \ldots
\end{aligned}
$$

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=01001001010010100100101001001 \ldots
\end{aligned}
$$

$F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots$
$F_{\infty}^{(6)}:=01001010010100100101001001010010100100101001010 \ldots$

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=01001001010010100100101001001 \ldots
\end{aligned}
$$

$F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots$
$F_{\infty}^{(6)}:=01001010010100100101001001010010100100101001010 \ldots$

- Mismatches come in consecutive symmetric pairs

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=01001001010010100100101001001 \ldots
\end{aligned}
$$

$F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots$
$F_{\infty}^{(6)}:=01001010010100100101001001010010100100101001010 \ldots$

- Mismatches come in consecutive symmetric pairs
- Gaps between these pairs expand with n

Tribonacci Word

$T_{\infty}:=010201001020101020100102010201001020101020100102 \ldots$
$T_{\infty}^{(13)}:=010201001020102010010201010201001020100102010102 \ldots$

Tribonacci Word

$T_{\infty}:=010201001020101020100102010201001020101020100102 \ldots$
$T_{\infty}^{(13)}:=010201001020102010010201010201001020100102010102 \ldots$
As before, there is a finite alphabet of "mismatches":

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

$T_{\infty}:=010201001020101020100102010201001020101020100102 \ldots$
$T_{\infty}^{(13)}:=010201001020102010010201010201001020100102010102 \ldots$
As before, there is a finite alphabet of "mismatches":

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

Expanding gaps between groups of mismatches

Echoing Sequences

Definition

A sequence \boldsymbol{u} is echoing if for all $\rho>0$ and $\varepsilon>0$ there exist $d>0$ and sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and
$d \geq 2$ such that:

Echoing Sequences

Definition

A sequence \boldsymbol{u} is echoing if for all $\rho>0$ and $\varepsilon>0$ there exist $d>0$ and sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and
$d \geq 2$ such that:
E1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all $n ;$

Echoing Sequences

Definition

A sequence \boldsymbol{u} is echoing if for all $\rho>0$ and $\varepsilon>0$ there exist $d>0$ and sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and
$d \geq 2$ such that:
E1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all n;
E2 the set of mismatches between strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ is a contained in a union of at most d intervals of total length at most εs_{n}.

Echoing Sequences

Definition

A sequence \boldsymbol{u} is echoing if for all $\rho>0$ and $\varepsilon>0$ there exist $d>0$ and sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and
$d \geq 2$ such that:
E1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all n;
E2 the set of mismatches between strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ is a contained in a union of at most d intervals of total length at most εs_{n}.

E3 the gaps between intervals expand with n.

Echoing Sequences

Definition

A sequence \boldsymbol{u} is echoing if for all $\rho>0$ and $\varepsilon>0$ there exist $d>0$ and sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and
$d \geq 2$ such that:
E1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all n;
E2 the set of mismatches between strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ is a contained in a union of at most d intervals of total length at most εs_{n}.

E3 the gaps between intervals expand with n.

Use Subspace Theorem to show transcendence of $S_{\beta}(\boldsymbol{u})$ for \boldsymbol{u} echoing.

Application to Dynamical Systems

"Are all irrational elements of the Cantor ternary set transcendental?"
K. Mahler, Some suggestions for further research, Bull. Austral. Math. Soc. 29 (1984).

Contracted Rotations

Given $0<\lambda, \delta<1$ such that $\lambda+\delta>1$, map $f: I \rightarrow I$ given by $f(x):=\{\lambda x+\delta\}$ is a contracted rotation with slope λ and offset δ.

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set if θ is irrational.

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set if θ is irrational.

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \bar{C} other than 0 and 1 is transcendental.

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set if θ is irrational.

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \bar{C} other than 0 and 1 is transcendental.

- Generalises result of Bugeaud, Kim, Laurent, Nogueira, which had $\lambda^{-1} \in \mathbb{Z}$.

Application to LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Application to LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Does there exist a sequence of inputs $u_{n} \in U$ such that the orbit

$$
x_{n+1}=A x_{n}+u_{n}, \quad x_{0}=0
$$

reaches the halfspace $x \geq c$?

Application to LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Does there exist a sequence of inputs $u_{n} \in U$ such that the orbit

$$
x_{n+1}=A x_{n}+u_{n}, \quad x_{0}=0
$$

reaches the halfspace $x \geq c$?

Determine whether $\sum_{n=0}^{\infty} u_{n} \frac{\cos (n \theta)}{b^{n}} \geq c$, where $u_{n}=1$ if $\cos (n \theta) \geq 0$ and $u_{n}=0$ otherwise.

