# Integrating economics and behaviour into disease transmission modelling

## David J. Haw

Lecturer in Mathematics for Health University of Liverpool

In partnership with the Economics of Pandemic Preparedness Initiative Imperial College London

# Integrated modelling

#### DAEDALUS:

#### Optimisation problem:

- Maximise GVA
- H<sub>max</sub> respected
- R<sub>end</sub><1
- Education sector active



# DAEDALUS: heterogeneity

 - 4 age groups, working age split by sector
 - GVA (Gross Value Added) indicates opening mapped to workplace/community contacts
 -Sectors of note: hospitality, education, transport

$$\frac{dS_i}{dt} = \beta S_i \sum_j C_{ij} \frac{I_j}{N_j}$$

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1n} \\ c_{21} & c_{22} & c_{23} & \dots & c_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & c_{n3} & \dots & c_{nn} \end{pmatrix}$$



# DAEDALUS: example solution

Example solution:

- H<sub>max</sub>=18,000
- δ=0.72 fixed
- Education @ 80%



# DAEDALUS: economic loss



## DAEDALUS: transmission modifiers



# Limitations

- Point estimates of sector-stratified contact rates
- GVA determines sector closure
- High sensitivity to some contact rates and to modifiers
- Modifiers are extrinsic

How can we make behavioural factors intrinsic to the model?

## What is behaviour?

Activities: Mask wearing Hand washing Social distancing Meeting outdoors Rule of six Cancelling plans Avoiding healthcare facilities Avoiding children/childcare facilities Shopping online Working from home Virtual meetings Testing (symptomatic/asymptomatic)

> Psychological drivers: Risk version Time preferences Overconfidence Trust in government Altruist/pro-social behaviour

#### **Relevance to force-of-infection:**

Number of contacts Probability of infection given contact

**Relevance to economics:** 

Workplace structure Expenditure (hospitality/retail)

# Behavioural feedback

Simple model:

For all age/sector groups i, j split contact rate into 2 behavioural subgroups

| $\frac{dS_i}{dt}$ | = | $\beta S_i \sum_j$                                                    | $C_{ij}\frac{I}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{j}{J_j}$           |                    |                                  |  |
|-------------------|---|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------------------------------|--|
| C                 | _ | $ \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{n} \end{pmatrix} $ | $c_{12} \\ c_{22} \\ \vdots \\ c_{22} \\ c_{22}$ | $c_{13}$<br>$c_{23}$<br>: | ····<br>···<br>··. | $c_{1n}$<br>$c_{2n}$<br>$\vdots$ |  |



## Behavioural feedback

Simple model: for all age/sector groups, split contact rate into 2 behavioural subgroups

| $\frac{dS_i}{dt}$ | = | β | $SS_i \sum_j$       | $C_{ij} \frac{I_j}{N_j}$ |                     |                     |                     |                     |     |                     |                     |
|-------------------|---|---|---------------------|--------------------------|---------------------|---------------------|---------------------|---------------------|-----|---------------------|---------------------|
|                   |   | ( | $\alpha^2 p c_{11}$ | $\alpha(1-p)c_{11}$      | $\alpha^2 p c_{12}$ | $\alpha(1-p)c_{12}$ | $\alpha^2 p c_{13}$ | $\alpha(1-p)c_{13}$ |     | $\alpha^2 p c_{1n}$ | $\alpha(1-p)c_{1n}$ |
|                   |   |   | $\alpha pc_{11}$    | $(1-p)c_{11}$            | $\alpha pc_{12}$    | $(1-p)c_{12}$       | $\alpha pc_{13}$    | $(1-p)c_{13}$       |     | $\alpha pc_{1n}$    | $(1-p)c_{1n}$       |
|                   |   |   | $\alpha^2 p c_{21}$ | $\alpha(1-p)c_{21}$      | $\alpha^2 p c_{22}$ | $\alpha(1-p)c_{22}$ | $\alpha^2 p c_{23}$ | $\alpha(1-p)c_{23}$ |     | $\alpha^2 p c_{2n}$ | $\alpha(1-p)c_{2n}$ |
| C                 | = |   | $\alpha pc_{21}$    | $(1-p)c_{21}$            | $\alpha pc_{22}$    | $(1-p)c_{22}$       | $\alpha pc_{23}$    | $(1-p)c_{23}$       |     | $\alpha pc_{2n}$    | $(1-p)c_{2n}$       |
|                   |   |   | :                   | :                        | :                   | :                   | :                   | :                   | · . | :                   | :                   |
|                   |   |   | $\alpha^2 p c_{n1}$ | $\alpha(1-p)c_{n1}$      | $\alpha^2 p c_{n2}$ | $\alpha(1-p)c_{n2}$ | $\alpha^2 p c_{n3}$ | $\alpha(1-p)c_{n3}$ |     | $\alpha^2 p c_{nn}$ | $\alpha(1-p)c_{nn}$ |
|                   |   |   | $\alpha pc_{n1}$    | $(1-p)c_{n1}$            | $\alpha pc_{n2}$    | $(1-p)c_{n2}$       | $\alpha pc_{n3}$    | $(1-p)c_{n3}$       |     | $\alpha pc_{nn}$    | $(1-p)c_{nn}$       |

Note:  $p=p_{age}$ , time dependence  $\alpha(t)$ , p(t)

Behavioural parameters:  $\alpha$  (effectiveness of behavioural change),  $p_{age}$  (proportions of age group changing behaviour)

## Parameter interpretation

Example: logistic feedback

 $\alpha$  fixed, p depends on some real-time quantity v(t)

In reality:

- Work in discrete time intervals
- Require several variables:

$$p(t) = \frac{m}{1 + e^{v_0 - \mathbf{k} \cdot \mathbf{v}(t)}}$$



## Parameter interpretation

#### Logistic feedback using GVA





# Model Calibration B: GVA

Model fit

- 3 principal components of GVA:  $k_1, k_2, k_3, m, v_0, \alpha$
- Fixed *p* in each monthly period
- Calibration informative retrospectively
- Use in projections requires prescription of GVA values i.e. simultaneous modelling of economic activity



# Model projections

Project forwards (GVA)



# Moving forward

**Proof of concept:** 

simple models of behavioural change can encapsulate outbreak dynamics when calibrated so simple data sets

Behavioural parameter are companion to natural history parameters of a new outbreak Finding model parameters can be done directly (survey) or indirectly (fitting) **Projection requires dependency of parameters on measurable/modelable quantities** Identify behavioural archetypes



**EPPI group:** 

Patrick Doohan, Rob Johnson, Christian Morgenstern, Narges Mohammadi,

Kanchan Parchani, Giovanni Forchini, Katharina Hauck, Marisa Miraldo