

Learning a Social Network by Influencing Opinions

Dmitry Chistikov, Luisa Estrada, Mike Paterson and Paolo Turrini

	•	•	A	•		A	٠	•		٠	•		٠	
•	•	•	-	•	•	•	•	•	•	•	•	•	•	٠
•	•		•	-	•	٠	-		٠	•		٠	-	
•	٠	•	•	٠			•	•	•	•			•	
•	•	•	•	•	•	•	•	•	•	•	•	-	•	٠
•	•		•			٠	•		•	•		•	•	

A	•	•	•	•			٠		•	•			٠	•
•	•	•	-		•	•		٠	•	•	•	•		•
•	•		٠			٠			٠			٠	•	

INFLUENCING OPINION DYNAMICS

Suppose you are a campaigner who wants to promote a new ...

law product technology initiative initial opinion about it (\bigcap, \bigcap)

- ✓ You can persuade some members to support your campaign.
- ✓ You know how "people talk" across the social network.

Want to target the members with the strongest influence.

INFLUENCING OPINION DYNAMICS

Suppose you are a campaigner who wants to promote a new ...

law product technology initiative on a social network where each member has an initial opinion about it (\bigcap, \bigodot)

- ✓ You can persuade some members to support your campaign.
- ✓ You know how "people talk" across the social network.
 - **‡** Knowing who talks to whom.

Want to target the members with the strongest influence.

PROBLEM SETUP

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

PROBLEM SETUP

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

PROBLEM SETUP

- ✓ Allow the campaigner to intervene on the agents' opinions and observe the result.
- \checkmark Stop once there is only one feasible network.
- Opinions diffuse following majority dynamics.

Game rules

x Connections between agents are hidden.

PROBLEM SETUP: AN EXAMPLE

Task: To learn the underlying network.

Observations and Budget: (人)

interventions £

Underlying network

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

Campaigner's view

PROBLEM SETUP: AN EXAMPLE

Task: To learn the underlying network.

Observations and Budget: (し)

interventions

£

Underlying network

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

Campaigner's view

Task: To learn the underlying network.

Observations and Budget: (し)

interventions £

Hidden Underlying network

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

Campaigner's view

Learning task	Observation budget	Intervention budget
Identify an even clique	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Identify an odd clique	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
Learn any network $G\in \mathcal{H}$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^3)$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

Learning task	Observation budget	Intervention budget
Identify an even clique	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Identify an odd clique	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$
Learn any network $G\in\mathcal{H}$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^3)$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

$$(\mathbf{t}^{+1})$$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

$$(\mathbf{t}^{+1})$$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

$$(\mathbf{t}^{+1})$$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 1: Find the pivot

Same number of influencers on LHS and RHS

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch) Stage 1: Find the pivot Budget: $(l) \leq n$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

 \mathcal{N}

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $\mathcal{O}(n^2)$ of her observation budget and $\mathcal{O}(n^3)$ of her intervention budget.

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

$$\bigcirc \le n + 1$$

$$\mathbf{E} \leq n^2 + n$$

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Chistikov, Estrada, Paterson and Turrini

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

$$\bigcirc \le n + 1$$

$$\epsilon \le n^2 + 2n$$

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

$$\bigcirc \le n+2$$

$$\mathbf{E} \leq n^2 + \mathbf{3}n$$

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Stage 2: Find all other influencers

Budget:

$$\bigcirc \le n+2$$

$$\mathbf{E} \leq n^2 + \mathbf{3}n$$

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Budget:

$$\bigcirc \leq n+3$$

$$\mathbf{E} \leq n^2 + 3n$$

Stage 2: Find all other influencers

Learning a Social Network

How can we identify **any** network?

Theorem:

A campaigner who observes a social network with n agents can learn the underlying graph exactly by using $O(n^2)$ of her observation budget and $O(n^3)$ of her intervention budget.

Proof (sketch)

Budget:

$$\bigcirc \le n + (n-2)$$

$$\mathbf{E} \le n^2 + (n-2)n$$

Stage 2: Find all other influencers

Only consistent influencers for

SOME FOOD FOR THOUGHT

- What would happen if we had a threshold other than the majority?
- Can we efficiently learn the correct network probably approximately (PAC)?
- What would happen if we add dynamic rules to our network?
 (eg. partner selection, rich get richer, ...)
- How can we scale our approach so it can handle inputs from real-world data?

