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People who live 
in more scenic

locations
report 

better health

Seresinhe, Preis & Moat (2015)
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Evaluating beauty with AI
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Happiness is Greater in More Scenic 

Locations
Chanuki Illushka Seresinhe  1,2, Tobias Preis  1,2,3, George MacKerron4 & 

Helen Susannah Moat1,2,3

Does spending time in beautiful settings boost people’s happiness? The answer to this question has 

long remained elusive due to a paucity of large-scale data on environmental aesthetics and individual 

happiness. Here, we draw on two novel datasets: first, individual happiness data from the smartphone 

app, Mappiness
, and second, crowdsourced ratings of the “scenicness” of photographs taken across 

England from the online game Scenic-O
r-Not. We find that individuals are happier in more scenic 

locations, even when we account for a range of factors such as the activity the individual was engaged 

in at the time, weather conditions and the income of local inhabitants. Crucially, this relationship holds 

not only in natural environments, but in built-up areas too, even after controlling for the presence of 

green space. Our results provide evidence that the aesthetics of the environments that policymakers 

choose to build or demolish may have consequences for our everyday wellbeing.

Areas of great natural beauty have long been considered to be locations in which one might hope to feel a greater 

sense of happiness. What characteristics of such environments might be driving such an e!ect? Is it simply the 

overwhelming presence of nature, or might the beauty of these environments be crucial? If aesthetics play a key 

role, might this apply in built-up environments too, where policy makers, urban planners, property developers, 

and architects can a!ect the design of the places we experience, and potentially therefore our everyday happiness?

"e relationship between the environment and subjective wellbeing has been the subject of an extensive sci-

enti#c literature1–5 as well as parliamentary brie#ngs6. Experimental and survey based studies have produced 

a sequence of results suggesting that natural habitats are associated with greater happiness, a result usually 

explained with reference to the ‘biophilia hypothesis’, which suggests that evolutionary pressures have led to a 

human preference for a connection with nature7. However, to date, researchers in this domain have had to con-

tend with considerable limitations in measuring happiness levels as humans experience di!erent environments8 

as well as in measuring the aesthetics of those di!erent environments.

Limitations in measuring subjective wellbeing have largely been due to the resources required to administer a 

survey to establish how happy an individual is. In experimental situations, this constraint has normally resulted 

in only one or two measurements being taken, for a restricted number of participants1,2,9. Where major survey 

initiatives have facilitated the collection of subjective wellbeing data for thousands of participants, questionnaires 

have usually been administered at most once a year4,5. Such approaches have not enabled researchers to measure 

the $uctuations in happiness that may occur as individuals experience a range of environments during their 

everyday life.
Similarly, researchers have had limited access to large-scale data on the beauty of the environment. In exper-

imental settings where researchers have directly exposed participants to di!erent environments, environments 

have been classified as either urban or natural1,2. In survey based studies of large numbers of participants, 

researchers have been able to draw on national scale data on the environment derived from remote imaging, 

such as data on whether an area is natural or built-up3, or how much green space is present in the local environ-

ment4,5. A new line of studies has asked participants to gather photographs of the environments they experience10. 

However, data on the aesthetics of the environments experienced by the participants have not been available for 

analysis.
Intriguingly, results from studies in which participants viewed sequences of images provide initial indica-

tions that photographs of environments considered more attractive are associated with improved mood11–13. An 
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