MATHEMATICS
UNDERGRADUATE STUDY
The quantified contribution of mathematical science research to the UK economy is estimated to be approximately 2.8 million in employment terms and £208 billion in terms of GVA contribution.

Because a problem shared is a problem to be enjoyed.

At Warwick, we have a passion for mathematics. We’re excited to find beauty within mathematical challenge, revealing numbers, patterns and structures which help uncover new levels of understanding.

You’ll collaborate alongside others to unlock that understanding, in a custom-built environment dedicated to exploring mathematics in traditional and innovative ways; where breakout areas are equipped with blackboards, and corridors are filled with conversations on calculus and conundrums.

We pride ourselves in how long we’re prepared to take to get under the skin of a problem. It’s this commitment that’s given us our acclaimed reputation. If you can show you share in this commitment, we’d love for you to join us.

By joining us, you’ll be given the time and space for you to be groundbreaking. And the skills you’ll develop, and the intellectual challenges you’ll overcome, will help you find the solution to where your future path can lead.

WHY STUDY MATHEMATICS?

“It is impossible to be a mathematician without being a poet in soul.”

Sofia Kovalevskaya (1850-1891)

"The quantified contribution of mathematical science research to the UK economy is estimated to be approximately 2.8 million in employment terms and £208 billion in terms of GVA contribution."
WHY MATHS AT WARWICK?

+ SPACES DESIGNED FOR MATHEMATICAL EXPLORATION
 We provide an environment designed for you to immerse yourself in mathematics. You can treat Warwick as your open workspace, allowing you and your friends to engage in mathematics wherever you find yourselves.

+ INSPIRATION THROUGH COLLABORATION
 From the point you arrive at Warwick, you’ll find mathematical understanding through collaboration, with both staff and students.

+ A PERSONALISED EXPERIENCE
 You’re free to explore a range of mathematics options, to whatever level you’re comfortable with.

+ TEACHING THAT’S BOTH INNOVATIVE AND TRADITIONAL
 We’ll take whatever approach is necessary to give you a rich learning experience. Modern mathematical teaching practices sit alongside traditional practices, all geared towards preparing you for success after graduation.

+ AN EXCEPTIONAL, PIONEERING REPUTATION
 You’ll be taught in a department renowned for gathering an enviable group of academic professionals, pioneers within their field in both teaching and research.

“You have to be prepared to work hard but once you’re OK with that it’s the most exciting place to study Maths.”

Adday, Mathematics with Interlaced Year BSc, student 2015-2019 and Women in Maths representative.
YOUR WAY IN...

A Levels**

Applicants for 2024 entry are likely to receive the following offer:

A Maths, A* Further Maths plus either:
- A in a third subject at A-level plus a suitable grade in an admissions test*
 OR
- A* in a third A-Level
 OR
- AA in a third and fourth subject at A-Level

*As a guide, in 2023 the Admissions grade required was grade 2 in STEP/6.5 in TMUA/64 in MAT.

We make some offers under our widening participation scheme. For further information please see our web page warwick.ac.uk/study/undergraduate/apply/contextual-offers

MAT, TMUA and STEP**

We encourage applicants to take one of the following three admissions test:

- **MAT** - Mathematics Admissions Test
- **TMUA** - Test of Mathematics for University Admission
- **STEP** - Sixth Term Examination Paper

Preparing for one of these tests will help you develop your problem solving skills and deepen your understanding of mathematics.

Here are some points you should bear in mind:

- The TMUA is in November and the MAT is in October
- STEP is in June - there are two STEP papers and we accept either of these
- See our MAT, TMUA and STEP page for helpful resources and links explaining how to register for these tests warwick.ac.uk/mathsstep

Note:

- We don’t interview but we do invite you to attend an offer holder open day to see the department, and meet staff and current students.
- General Studies and Critical Thinking do not count towards A Level requirements.

** Please note, entry requirements for 2024 cohort will be reviewed in September 2023 and are subject to change.
Please refer to updated information that will be available on our website warwick.ac.uk/fac/sci/maths/studywithus/ug
YOUR WAY IN…

with the International Baccalaureate**

Applicants for 2024 entry are likely to receive the following offer:

• Either 39 points overall, with 6, 6, 6, in three Higher Level subjects, to include Maths (‘Analysis and Approaches’ only), plus a suitable grade in admissions test*

OR

• 39 with 7, 6, 6 in three Higher Level subjects, to include Mathematics (‘Analysis and Approaches’ only)

• As a guide, in 2023 the admissions grade required was grade 2 in STEP/ 6.5 in TMUA/ 64 in MAT.

if you live outside the UK

The University of Warwick is home to a vast number of international students from over 140 countries, and the Mathematics staff are recruited worldwide and contribute to the Institute’s cosmopolitan outlook. We warmly welcome applications from international students who share our passion for mathematics.

If you have any queries about entrance requirements, please contact us at mathsadmissions@warwick.ac.uk

Further help and advice can be found on our international study pages:
warwick.ac.uk/study/international

English language: All applicants must satisfy the University’s Admissions Requirement, including a minimum level of competence in the English language.

warwick.ac.uk/study/undergraduate/apply/language

**Please note, entry requirements for 2024 cohort will be reviewed in September 2023 and so are subject to change.

Please refer to updated information that will be available on our website: warwick.ac.uk/faculties/sci/enquiries/ug
We offer two single-subject Mathematics degrees:

G100: Mathematics BSc
This is a 3-year maths degree that is broad and highly flexible.

G103: Master of Mathematics (MMath)
This 4-year degree is a natural route for those contemplating a mathematical career in industry, business or academia.

Course Structure for Maths BSc:
- 1st year: 9 core modules (75% of typical workload).
- 2nd year: 5 core modules plus 2 more maths modules (55% of typical workload).
- 3rd year: no core, 40% of typical workload must be maths

The remaining modules can be chosen from mathematics or one of many subjects.

Course Structure for MMath:
- Same core as BSc but with 7 core modules in 2nd year.
- Students must do approximately 75% maths each year.

Teaching: Most of our teaching is through lectures. These are typically 3 hours per week for each module, and delivered by a member of academic staff. Undergraduates usually take around five modules in each of Term 1 and Term 2. Term 3 is mostly for revision and examinations.

“Studying Maths at Warwick is challenging, but a nice challenge. When you put a lot of effort in and manage to work out something you’ve been stuck on for a while, that feeling is so rewarding.”

Helen, MMath student 2014-2018

Three or Four Years Maths?
The Maths BSc and MMath have the same entrance requirements and share the same core in the 1st year. It is easy to switch from the Maths BSc to the MMath until the end of the 1st year, and from the MMath to the Maths BSc until the end of the 3rd year. If you’re struggling to decide pick either and you can change your mind later.

Taking a gap year before study?
We welcome applicants who wish to take a ‘gap year’ between school and university. Just achieve your admissions offer and your place will be reserved.

Can I study abroad or do a work placement?
You can choose to study abroad or undertake a year-long work placement as part of either the BSc or MMath degrees. More information can be found on page 18.
Modules offered in 1st year *

1st Year Core Maths Modules:

1st Year Optional Modules
- From Physics: Classical Mechanics and Special Relativity, Electricity and Magnetism, Astronomy, Quantum Phenomena.
- From Computer Science: Discrete Mathematics and its Applications 2.
- From Economics: Introduction to Quantitative Economics.
- From the Warwick Business School: Mathematical Programming I.
- The Language Centre at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian and Spanish at a wide range of levels.

“The most interesting part of doing Maths at Warwick is how flexible the degree has been. I was able to choose options from my very first day - and the number of options has only increased as I’ve gone along, allowing me to pick modules to my interests.”

Emily, Mathematics BSc student 2015-2018

Modules offered in 2nd year *

2nd Year Core Maths Modules:
- MMath: As above with the addition of Multilinear Algebra and Multivariable Analysis.

2nd Year Optional Modules
- From Computer Science: Algorithms, Logic and Verification, Algorithmic Graph Theory.
- From Economics: Mathematical Economics 1A, Mathematical Economics 1B.
- Education Studies: Introduction to Secondary Maths Teaching.
- The Language Centre at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian and Spanish at a wide range of levels.

* The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2023-2024 academic year.

13
Modules offered in 3rd year

The 3rd year has no core modules.

3rd Year Optional Modules from Mathematics and Statistics

- **Algebra and Number Theory**
 - Galois Theory, Rings and Modules, Groups and Representations, Commutative Algebra, Algebraic Number Theory, Introduction to Group Theory.
- **Analysis**
- **Geometry and Topology**
- **Real-World Systems and Applied Mathematics**
 - Topics in Mathematical Biology, Bifurcations Catastrophes and Symmetry, Fluid Dynamics, Numerical Analysis and PDEs, Mathematical Modelling and PDEs, Matrix Analysis and Algorithms, Mathematics of Machine Learning, Mathematics of BSP.
- **Probability**
- **Statistics**
 - Bayesian Statistics and Decision Theory, Applied Stochastic Processes, Monte Carlo Methods, Mathematical Finance, Designed Experiments, Multivariate Statistics, Medical Statistics, Topics in Data Science, Bayesian Forecasting and Intervention.
- **Other**

The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2023-2024 academic year.

The Language Centre at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian and Spanish at a wide range of levels.

Other modules offered in 3rd year

3rd Year Optional Modules from Other Subjects

- **Physics**: Statistical Physics, Physics in Medicine, Quantum Physics of Atoms, Electrodynamics, Scientific Programming, Plasma Electrodynamics, Galaxies, Cosmology, Nuclear Physics, General Relativity.
- **Engineering**: Systems Modelling and Control.

Other modules offered in 3rd year

3rd Year Optional Modules from Other Subjects

- **Physics**: Statistical Physics, Physics in Medicine, Quantum Physics of Atoms, Electrodynamics, Scientific Programming, Plasma Electrodynamics, Galaxies, Cosmology, Nuclear Physics, General Relativity.
- **Engineering**: Systems Modelling and Control.
- **The Language Centre**: at Warwick offers academic modules in Arabic, Chinese, French, German, Japanese, Russian and Spanish at a wide range of levels.

* The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2023-2024 academic year.
Modules offered in 4th year *

4th Year Core Maths Module:
Research Project/Maths in Action Project.

4th Year Optional Modules from Mathematics, Physics and Statistics:

- Algebra, Discrete Math and Number Theory
 Lie Algebras, Reflection Groups, Group Theory, Graph Theory, Analytic Number Theory, Elliptic Curves, Modular Forms, Category Theory, Theorem Proving with Lean, Ring Theory, Commutative Algebra II.

- Analysis
 Fourier Analysis, Stochastic Analysis, Advanced Real Analysis, Advanced PDEs, Geometric Measure Theory, Mathematics of Inverse Problems.

- Geometry and Topology

- Real-World Systems and Applied Mathematics
 Transport Processes in Mathematical Biology, Continuum Mechanics, Population Dynamics, Topics in Complexity Science, Advanced Topics in Fluids, Structures of Complex Systems, Mathematics of Neural Networks, Epidemiology by Example.

- Theoretical Physics
 Relativistic Quantum Mechanics, High Performance Computing in Physics, Gauge Theories in Particle Physics, General Relativity, Quantum Mechanics Basic Principles and Probabilistic Methods.

- Dynamics
 Hyperbolic Dynamics, Dynamical Systems, Ergodic Theory, Complex Dynamics, Applied Dynamical Systems.

- Probability and Statistics
 Brownian Motion, Bayesian Forecasting and Intervention, Applied Stochastic Processes, Monte Carlo Methods, Theory of Random Graphs, Large Deviation Theory, Multivariate Statistics, Symmetric Functions and Integrable Probability.

- Real-World Systems and Applied Mathematics
 Transport Processes in Mathematical Biology, Continuum Mechanics, Population Dynamics, Topics in Complexity Science, Advanced Topics in Fluids, Structures of Complex Systems, Mathematics of Neural Networks, Epidemiology by Example.

- Theoretical Physics
 Relativistic Quantum Mechanics, High Performance Computing in Physics, Gauge Theories in Particle Physics, General Relativity, Quantum Mechanics Basic Principles and Probabilistic Methods.

- Dynamics
 Hyperbolic Dynamics, Dynamical Systems, Ergodic Theory, Complex Dynamics, Applied Dynamical Systems.

- Probability and Statistics
 Brownian Motion, Bayesian Forecasting and Intervention, Applied Stochastic Processes, Monte Carlo Methods, Theory of Random Graphs, Large Deviation Theory, Multivariate Statistics, Symmetric Functions and Integrable Probability.

Support for Learning

Tutorials
Your Personal Tutor is a member of academic staff. Tutors will advise on module choices, discuss mathematics with you in detail, help you to overcome minor and major problems, guide you through writing essays, and write reference letters for you.

Supervisions (1st Year)
Your supervisor is a postgraduate or 4th year student. Being only a little older than you, your supervisor remembers the challenges of being a 1st year maths undergraduate and will support you through these. The supervisor marks your homework providing feedback, and endeavours to answer your questions.

Support Classes
Most 2nd, 3rd and 4th year modules have support classes associated with them. These are run by postgraduates who work through examples, provide homework feedback, answer questions, and often offer an alternative point-of-view from the lecturer.

Maths Society
There is also a very active undergraduate Mathematics Society. They organise a weekly Maths Cafe, a student-led peer support group which offers informal problem-solving sessions and a listening ear, and produce revision notes at exam time as well as organising other academic and social activities.

Vicki, MMath student
2014-2018

* The list of modules varies from year to year and is subject to changes in curriculum and staff research interests. This list is accurate for the 2023-2024 academic year.
Although we offer two main degrees students may then elect to follow further pathways on these degrees - typically when choosing to study abroad or undertake a year-long work experience placement. If you’re interested in one of these options you can apply during your second year:

G101: Mathematics with Intercalated Year BSc
You will spend a year studying abroad or on a work placement typically between years 2 and 3 of your degree, adding a year to your degree duration.

G105: Mathematics with Intercalated Year MMath
You will spend a year studying abroad or on a work placement, typically between years 2 and 3 of your degree, adding a year to your degree duration.

G106 Mathematics (MMath) with Study Abroad
This option will not add a year to your degree duration but instead, you will spend the third year of your degree at one of our overseas partner universities. After your year overseas, you will return to Warwick for your final year.

If you choose to study abroad we can prepare you with the necessary language skills through the Warwick Language Centre.

While we do not offer any formal support with arranging work placements, our departmental careers advisor and the university-wide careers support services are available to students and can provide support sourcing and applying for placements to those who are interested.

STUDY ABROAD & WORK PLACEMENTS

Mathematics is constantly evolving. The Warwick Mathematics Institute is home to a number of world-leading research groups in pure and applied mathematics that keep our department at the forefront of research developments.

Active research areas include Algebraic Geometry, Number Theory, Probability, Geometric Analysis, Dynamical Systems, Mathematical Biology and Complexity Science.

Research initiatives involving mathematics at Warwick include:

- The Warwick Mathematics Research Centre. Founded in 1964, this was the first such centre in the UK. It runs many workshops and conferences, and hosts hundreds of visiting mathematicians every year from all over the world.
- Mathematical Interdisciplinary Research at Warwick, fosters mathematical research and training across 11 academic disciplines.
- The Centre for Scientific Computing, driving high-performance computational research.
- The Centre for Discrete Mathematics and its Applications, brings together researchers in graph theory, combinatorics and operational research from Mathematics, Computer Science and the Business School.
- The Alan Turing Institute. This is the national institute for data science, founded by the Mathematics, Statistics and Computer Science departments at Cambridge, Edinburgh, Oxford, UCL and Warwick.
- The Zeeman Institute: SBIDER, brings sophisticated mathematics to challenges in biological sciences. Our research spans from the theoretical to practical policy advice, and from the genome to the population. At the core of our research is a desire to better understand and predict the biological world, often with the ultimate goal of controlling disease.
- COVID-19: Members of the Zeeman Institute are contributing to the COVID-19 modelling response, both in the UK and abroad. Our group supports the UK response to COVID-19 through membership of the Scientific Pandemic Influenza Group on Modelling (SPI-M), an expert group advising the Scientific Advisory Group for Emergencies (SAGE). Scientific evidence supporting the UK government response to COVID-19 can be found on the SAGE website, including modelling inputs and reports from SPI-M to SAGE.
Kat Rock is an Associate Professor in the Mathematics Institute. A Warwick MMath graduate herself, she is a mathematical epidemiologist with a particular interest in vector-borne neglected tropical diseases.

Kat investigates and develops models for human African trypanosomiasis (HAT, or more commonly known as sleeping sickness) and leads the Bill and Melinda Gates Foundation-funded research project ‘HAT Modelling and Economic Predictions for Policy’. HAT is a parasitic infection, affecting large parts of Sub-Saharan Africa, that’s transmitted by tsetse flies, causing debilitating symptoms and is often fatal without treatment.

The project aims to inform decision-making strategies for the elimination of the disease. Bringing together an international, multidisciplinary team of mathematical modellers, researchers and national programmes, the group assesses local elimination strategies, provides cost-effectiveness analyses and will deliver an investment case for elimination.

Kat explains, “There are two options for disease control - you either treat current infections or focus on preventing the future spread of the disease. Prevention measures vary by disease but might include vaccination and insect control. Smallpox remains the only human disease to have been completely eradicated from the globe by our deliberate intervention. Through treatment and tsetse control it is possible to greatly reduce the prevalence of sleeping sickness to manageable levels. But to get from low cases to no cases is much, much harder. My work looks at the feasibility and value of that.”

“When I started my Maths degree at Warwick I had no idea what job I might do afterwards, although my Dad was keen for me to be an actuary. Some of my friends went down that route but I found the flexibility of the course allowed me to develop my own path. I became drawn to the application of maths to solve real-world problems. Even though I only took Biology to GCSE, by taking specialist modules in the second and third years, as well as undertaking relevant projects I was able to shape my degree to nurture my growing interest in the dynamics of infectious diseases.”

“I frequently employ the skills I developed on my undergraduate course even now. Modules in programming, differential equations, population dynamics and systems biology are all directly relevant to my work.”
Here we present a few examples of theorems and ideas due to Warwick mathematicians. These have been chosen because their statements are accessible to A-level students, even though the methods and ideas behind some are very advanced. In perusing these, you’ll notice that they’re not motivated by practical applications. Some of the maths research at Warwick is aimed at solving real-world problems, but most of it is driven by a burning desire to know. You’ll also notice that mathematicians in other countries are involved as collaborators, and this is typical: research is international.

You’re perhaps curious about the research-level mathematics that takes place at Warwick.

Here we present a few examples of theorems and ideas due to Warwick mathematicians. These have been chosen because their statements are accessible to A-level students, even though the methods and ideas behind some are very advanced. In perusing these, you’ll notice that they’re not motivated by practical applications. Some of the maths research at Warwick is aimed at solving real-world problems, but most of it is driven by a burning desire to know. You’ll also notice that mathematicians in other countries are involved as collaborators, and this is typical: research is international.

These examples also give rise to further natural questions and new directions. Perhaps you might solve one of these some day?

GLIMPSES OF MATHS RESEARCH AT WARWICK

Three Colourings of Maps

You might have heard of the Four Colour Theorem, proved in 1977 by Appel and Haken. A map is n-colourable if we can colour it using n colours so that no two adjacent regions share the same colour. The Four Colour Theorem simply says that any map is four colourable. You should be able (with a little experimentation) to draw a map that isn’t 3-colourable.

A list R,S,T,U of four regions in a map is called a cycle of length 4 if R shares a border with S, and S shares a border with T, and T shares a border with U and U shares a border with R. You can define a cycle of length 5 in the analogous way. A famous problem in graph theory (from 1976) is known as Steinberg’s conjecture. This claims that a map that doesn’t have cycles of length 4 or 5 is 3-colourable. Many graph theorists have tried to prove Steinberg’s conjecture. In 2016 Steinberg’s conjecture was disproved by Warwick graph theorists Daniel Kral and Michael Hebdige, working with colleagues in France and Chile. In fact they constructed a map with 123 regions that doesn’t have cycles of length 4 or 5 and isn’t 3-colourable.

Open problem: Is there a map that doesn’t have cycles of length 4, 5 or 6 and isn’t 3-colourable?

Irrationality of Odd Values of the Riemann-Zeta Function

We call a number rational if it can be written as a ratio of two whole numbers, and otherwise we say it is irrational. Another famous irrational number isπ. For a whole number n≥2 we let:

\[
\zeta(n) = 1 + \frac{1}{2^n} + \frac{1}{3^n} + \frac{1}{4^n} + \ldots
\]

This is the Riemann-Zeta function, one of the most fascinating functions in mathematics, and intimately related to the distribution of primes. If n is even then \(\zeta(n)\) can be written in terms of \(\pi\) for example:

\[
\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}
\]

These expressions can be used to show that \(\zeta(n)\) is irrational for even n. For odd n, it seems that \(\zeta(n)\) is unrelated to \(\pi\). For a long time mathematicians have been trying to prove the irrationality of these odd values of the Riemann-Zeta function, with the only success being due to Roger Apéry who showed in 1978 that \(\zeta(3)\) is irrational. Warwick mathematician Keith Ball, in collaboration with Tanguy Rivoal at Grenoble, showed that there are infinitely many irrational odd values of the Riemann-Zeta function.

Open problem: Is \(\zeta(5)\) irrational?
The French mathematician Joseph Lagrange proved in 1770 that every positive whole number can be written as the sum of four squares of whole numbers. Ever since, number theorists have been trying to prove similar theorems with squares replaced by higher powers. In the 19th century a huge experiment was carried out by hand where all numbers up to 12,000 were decomposed as sums of cubes of non-negative whole numbers. On the basis of this experiment the German mathematician Carl Jacobi suggested in 1851 that every number bigger than 454 is the sum of seven cubes. This is now a theorem and many mathematicians have contributed towards the proof with the first steps being taken in the 1940s by Russian mathematician Linnik. But the final breakthrough that completed the proof came in 2016 and is due to Warwick number theorist Samir Siksek; we now know indeed that every number bigger than 454 is the sum of seven cubes. Amazingly, besides ingenuity the last step did not require very advanced mathematics and the proof can be understood by a first-year undergraduate.

Open problem: Can you design a mechanism with four interlocking gears?

Mathematical Art

Saul Schleimer is a Warwick geometric topologist. He has a particular talent for helping the public (and undergraduates) appreciate advanced ideas in geometry and topology through mathematical art and concrete models. As an example we mention here one of Saul’s models, developed in collaboration with Henry Segerman at Oklahoma State University. A relatively common sight in graphic designs is of three gears in contact. However, since neighbouring gears must rotate in opposite directions, none of the gears can move. Saul and Henry had the idea of designing a model of three interlocking gears that do actually move, and even printed a functional model using a 3D printer. You might want to google their article “Triple Gear” to see the mathematics that went behind the design or watch the YouTube video showing the gears in motion.

Open problem: Can you design a mechanism with four interlocking gears?

Sums of Cubes

The French mathematician Joseph Lagrange proved in 1770 that every positive whole number can be written as the sum of four squares of whole numbers. Ever since, number theorists have been trying to prove similar theorems with squares replaced by higher powers. In the 19th century a huge experiment was carried out by hand where all numbers up to 12,000 were decomposed as sums of cubes of non-negative whole numbers. On the basis of this experiment the German mathematician Carl Jacobi suggested in 1851 that every number bigger than 454 is the sum of seven cubes. This is now a theorem and many mathematicians have contributed towards the proof with the first steps being taken in the 1940s by Russian mathematician Linnik. But the final breakthrough that completed the proof came in 2016 and is due to Warwick number theorist Samir Siksek; we now know indeed that every number bigger than 454 is the sum of seven cubes. Amazingly, besides ingenuity the last step did not require very advanced mathematics and the proof can be understood by a first-year undergraduate.

Open problem: Can you design a mechanism with four interlocking gears?

A Module in Focus: Galois Theory

You might have wondered if there is a formula to solve a cubic equation, similar to the familiar quadratic formula. Such a formula was discovered by Niccolo Tartaglia (1500-1557) but is usually attributed to Gerolamo Cardano (1501-1576) who was the first to publish it. To solve $a x^3 + b x^2 + c x + d = 0$

let $p = \frac{3a c - b^2}{3 a^2}$ and $q = \frac{2 b^3 - 9 a b c + 27 a^2 d}{27 a^3}$

Then one of the solutions is given by

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

with the other two solutions given by similar expressions. Shortly afterwards Lodovico Ferrari (1522–1565) gave a formula for solving quartic (i.e. degree 4) equations. For the next 250 years mathematicians searched in vain for a formula for solving quintic equations. Evariste Galois (1811-1832) finally showed that there is no such formula (shortly before getting himself killed in a duel). Galois studied the symmetries of the solutions, and realised that when the degree is at least 5 the symmetries are too complicated for there to be a formula. In the third year Galois Theory module these symmetries are studied and measured using the modern language of groups and fields.

The language is so powerful that along the way many seemingly hopeless questions are resolved. For example, you probably remember how to bisect an angle using a ruler and compass. In this module it is shown by dimension counting that angles can’t be trisected using a ruler and compass.
As a Warwick graduate with a mathematics degree, you will have excellent prospects for a wide range of careers, the most popular areas being the Financial Sector (Accountancy, Actuarial and Investment Banking), Computing and Education.

Recent graduate occupations have included: Actuaries, economists and statisticians, Business and financial project management professionals, Data analysts, Brokers, Teaching professionals, Graphic and multimedia designers, Mechanical engineers, Quantity surveyors, IT business analysts, architects and systems designers.

Firms that have employed recent Warwick graduates from Mathematics Institute include: Bank of England; Ghstton; National Grid; Metaswitch; Goldman Sachs; IBM; Her Majesty’s Armed Forces; Frazer-Nash Consultancy; FIS; Engineering and Physical Sciences Research Council (EPSRC).

The majority of graduate recruiters hire from any degree discipline so a mathematics degree is also very transferable. Warwick mathematics graduates have also developed careers in the arts and creative industries for example, as well as the more traditional sectors where numerate skills are in demand.

Our Careers Service works for you, providing skills training, careers advice and information, and will continue to support you after your graduation. See warwick.ac.uk/careersandskills

Why is a Warwick Maths Degree an Excellent Career Move?

In today’s workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

Why is a Warwick Maths Degree an Excellent Career Move?

In today’s workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

Most Targeted University in UK by Top 100 Graduate Employers

(1) The Graduate Market in 2023, High Fliers Research Ltd

ALUMNI EXPERIENCES

When I started my undergraduate degree in maths at Warwick I was not entirely sure what I wanted to do afterwards and had never considered banking. In my second year I got a summer internship in corporate banking at a UK financial institution, which gave me the opportunity to explore different areas of the bank and I went on to apply for capital/debt markets graduate roles.

I now work in the loans and acquisition finance team at Citi. We raise loan financings for multi-national corporations, financial institutions and governments across Europe, the Middle East and Africa.

I enjoy the diversity of the role, working on a leveraged buyout facility in Poland is very different to a high profile acquisition finance transaction for a FTSE 100 corporate for example, and the different challenges I face, be it a difficult credit, negotiating legal documents or pitching to win business from new clients.

The flexibility in the degree at Warwick enabled me to choose some modules outside of Maths which I have since found useful in my chosen career: a Principles of Finance module gave me a basic introduction into corporate finance, and an Advanced Spanish module was particularly useful when working on a Spanish transaction.

I hope to continue to develop and gain experience in my role with the short term goal of progressing to a more senior level. Within banking in London there are few women in senior roles so I’d like to help re-balance this and inspire the next generation of women.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on the potential investment strategies to best meet benefits payable to members.

I applied for the graduate scheme in my final year of university, and have since progressed within the company. I wanted to work in an industry where I could use some of the skills I had developed throughout my Mathematics degree, and Investment Consulting looked like the right choice.

My main motivation is to keep learning and to keep challenging myself. Where that will take me only time will tell, but I’m looking forward to finding out.

Young Group; Mazars, Department for International Trade; Atos; Arm; TUI; Engineering and Physical Sciences Research Council (EPSRC).

Nilanthi Gajraj, Mathematics BSc 2007-2010
Now Vice President, Citi

Benjamin Li, Mathematics BSc 2011-2014
Now Associate Consultant (Investment Consulting), Aon

The majority of graduate recruiters hire from any degree discipline so a mathematics degree is also very transferable. Warwick mathematics graduates have also developed careers in the arts and creative industries for example, as well as the more traditional sectors where numerate skills are in demand.

Our Careers Service works for you, providing skills training, careers advice and information, and will continue to support you after your graduation. See warwick.ac.uk/careersandskills

Why is a Warwick Maths Degree an Excellent Career Move?

In today’s workplace, the ability to adapt to change and to learn new things is as important as having a particular range of knowledge.

During a Warwick Mathematics degree you will develop many of the qualities of intellect and temperament needed to meet new challenges, including:

- Analytical skills
- Logical thought processes
- Problem-solving ability
- Investigative skills
- Communication skills
- Effective working habits

5th MOST TARGETED UNIVERSITY IN UK BY TOP 100 GRADUATE EMPLOYERS

(1) The Graduate Market in 2023, High Fliers Research Ltd

ALUMNI EXPERIENCES

When I started my undergraduate degree in maths at Warwick I was not entirely sure what I wanted to do afterwards and had never considered banking. In my second year I got a summer internship in corporate banking at a UK financial institution, which gave me the opportunity to explore different areas of the bank and I went on to apply for capital/debt markets graduate roles.

I now work in the loans and acquisition finance team at Citi. We raise loan financings for multi-national corporations, financial institutions and governments across Europe, the Middle East and Africa.

I enjoy the diversity of the role, working on a leveraged buyout facility in Poland is very different to a high profile acquisition finance transaction for a FTSE 100 corporate for example, and the different challenges I face, be it a difficult credit, negotiating legal documents or pitching to win business from new clients.

The flexibility in the degree at Warwick enabled me to choose some modules outside of Maths which I have since found useful in my chosen career: a Principles of Finance module gave me a basic introduction into corporate finance, and an Advanced Spanish module was particularly useful when working on a Spanish transaction.

I hope to continue to develop and gain experience in my role with the short term goal of progressing to a more senior level. Within banking in London there are few women in senior roles so I’d like to help re-balance this and inspire the next generation of women.

The Mathematics degree at Warwick is challenging but as a result it is extremely rewarding. As soon as you have understood one topic/module, the next one is never too far away. The flexibility to pursue the areas of Mathematics that you most enjoy is extremely helpful - being able to tailor your degree to what you are most interested in allows you to get the most from it.

I now model pension fund assets and liabilities, helping to advise trustees on the potential investment strategies to best meet benefits payable to members.

I applied for the graduate scheme in my final year of university, and have since progressed within the company. I wanted to work in an industry where I could use some of the skills I had developed throughout my Mathematics degree, and Investment Consulting looked like the right choice.

My main motivation is to keep learning and to keep challenging myself. Where that will take me only time will tell, but I’m looking forward to finding out.
One of the best things about the MMath course at Warwick is the opportunity to study a wide range of modules. During my first two years, I followed courses in maths and physics. I discovered that my interest was in number theory and algebra, and I was able to develop this interest by following many advanced courses in these areas. In my final year I was fortunate to work with Prof. Samir Siksek, who supervised my MMath research project in number theory. This was a real turning point: Samir was extremely enthusiastic and helpful, and I enjoyed this project so much I began to think seriously about a career in research.

After graduating from Warwick, I began studying for a PhD at Royal Holloway. My background in number theory and algebra gave me a solid foundation for my specialism, cryptography. The highlight of my PhD was an internship in the Cryptography group at Microsoft Research, Redmond, USA. I went on to a postdoctoral position at Sorbonne Université in Paris, before returning to Royal Holloway.

My current role is varied and involves conducting research, writing papers, giving talks, teaching, organising workshops, and peer-reviewing others’ work. Research is a dream job for me: not only being paid to work on interesting problems, but also the opportunity to travel and discuss ideas with colleagues around the world. I regularly present my work at national and international conferences - my next trip will be to New Zealand!

Dr Rachel Player
MMath 2009-2013
Now Postdoctoral Researcher, Information Security Group, Royal Holloway

Maths Quiz
For her MMath Research Project Rachel investigated factorials that can be written as sums of three Fibonacci numbers, for example

\[6! = F_8 + F_{11} + F_{15} \]

Rachel found all such examples, and proved that there aren’t any others.
How many can you find?
I am an editor in primary school mathematics at Oxford University Press. My job involves creating interactive online teaching resources, brainstorming next steps for existing products with my team, and liaising with authors to create exciting, new mathematical content. Although the maths I do is at primary school level, I rely on the skills I developed during independent research modules at Warwick for proofreading and fact-checking. I also tutor KS3 to university level maths in the evenings, so I still get the opportunity to tackle challenging problems!

The Introduction to Secondary School Teaching module offered at Warwick helped to develop my love of education and teaching. This was furthered with the opportunity to teach secondary school maths in Ghana with the Warwick in Africa programme.

I am an editor in primary school mathematics at Oxford University Press. My job involves creating interactive online teaching resources, brainstorming next steps for existing products with my team, and liaising with authors to create exciting, new mathematical content. Although the maths I do is at primary school level, I rely on the skills I developed during independent research modules at Warwick for proofreading and fact-checking. I also tutor KS3 to university level maths in the evenings, so I still get the opportunity to tackle challenging problems!

The Introduction to Secondary School Teaching module offered at Warwick helped to develop my love of education and teaching. This was furthered with the opportunity to teach secondary school maths in Ghana with the Warwick in Africa programme.

I am an editor in primary school mathematics at Oxford University Press. My job involves creating interactive online teaching resources, brainstorming next steps for existing products with my team, and liaising with authors to create exciting, new mathematical content. Although the maths I do is at primary school level, I rely on the skills I developed during independent research modules at Warwick for proofreading and fact-checking. I also tutor KS3 to university level maths in the evenings, so I still get the opportunity to tackle challenging problems!

The Introduction to Secondary School Teaching module offered at Warwick helped to develop my love of education and teaching. This was furthered with the opportunity to teach secondary school maths in Ghana with the Warwick in Africa programme.
PARENTS AND SUPPORTERS

Supporting your child at Warwick
We understand that the wellbeing of your child is extremely important to any parent, and coming to university can be a big adjustment, both for your child and for you. At the University of Warwick, we fully understand this and are committed to providing a supportive, positive, and safe environment for all.

Sometimes students can encounter personal difficulties, but the University has a number of specialist support services to aid students through challenging times and enable them to fulfil their potential.

Wellbeing
Wellbeing Support Services help your child develop the personal resources and skills to navigate student life. We provide a range of support including both practical and emotional support for students’ wellbeing and helping them access other services from self-help resources to email counselling and therapy groups.

For 24/7 support, students can use their student emails to access ‘Togetherall’ which is an online platform offering digital mental health services from the help of trained clinicians and a community of peers. Whether they feel stressed, lonely, or just not themselves, this platform provides your children with a safe space to share their experiences and thoughts anonymously.

Accommodation and living support
When your child lives on campus during their first year, our Residential Community Team will live alongside them the whole way. They will be there to chat to or help them adjust to living away from home and getting the balance right between social and academic life. Our team is there to support them as they manage the “everyday life” stuff. We are happy to help with a range of different concerns, such as accessing wellbeing support, flatmate conflicts, general stress, anxiety, and homesickness to name a few.

Safety
The Community Safety department is a team of individuals dedicated to protecting the safety and security of everyone who lives, works and studies at the University. They have an on-Campus presence 24 hours a day, 365 days a year to provide pastoral support to everyone within our community. They also offer useful advice on how to stay safe both on and off campus. You can rest assured that your child will be safe with us at the University of Warwick.

What you can do to support your child at university
Especially when students start at University, the adjustment process can take time. Experience shows us that one of the biggest concerns for new undergraduate students is making friends. A degree of anxiety is a normal part of life, particularly when faced with new situations.

Whilst they may feel like they are in the minority, we can assure you, they are not. Most students will adjust within a number of weeks, but if your young person is still struggling, please encourage them not to come home as this may be worse for them. Instead encourage them to find support at Warwick, which they can get through our Wellbeing Support Services team and on our online Wellbeing Portal. Remind them to also take care of themselves as having a healthy sleep, diet and exercise routine is really key to positive for an all-round positive student experience.
WIDENING PARTICIPATION

We are committed to supporting students from diverse and under-represented backgrounds to study at Warwick and make the most of their university experience. We do this in a range of ways, including through our contextual admissions policy which is designed to ensure fairness in our admissions processes by taking into consideration widening participation (WP) indicators related to socio-economic and educational disadvantage.

Once at Warwick, we offer students from WP backgrounds the opportunity to access financial support, work experience, internships, and meet like-minded people through the WP Student Network, and the Warwick Scholars Programme.

To find out more, please visit: warwick.ac.uk/study/outreach/whatweoffer/undergraduateactivities
HOW TO APPLY

Everything you need to know about applying to Warwick is on our web pages. There is up-to-date information about:

• How to apply
• Writing your personal statement
• Key dates and deadlines
• How we process your application
• After you’ve applied

If you are made an offer and meet any outstanding conditions, we will confirm your place and look forward to warmly welcoming you at the start of your life here at Warwick.

How to apply:
warwick.ac.uk/study/undergraduate/apply

VISIT US

We hold a range of virtual and face-to-face events throughout the year. These include Open Days, Talk and Tours, and events hosted by departments. You can also take a self-guided tour of campus, or explore our interactive virtual campus tour in your own time.

Visit us:
warwick.ac.uk/study/undergraduate/visits/

OVERSEAS APPLICANTS

At Warwick, we welcome applications from across the globe, and have dedicated teams available to advise and support, as well as a global network of Agents and Representatives.

Overseas application advice:
warwick.ac.uk/io

STUDENT FEES AND FUNDING

We want to ensure that, wherever possible, financial circumstances do not become a barrier to studying at Warwick. We provide extra financial support for qualifying students from lower-income families.

Fees and funding:
https://warwick.ac.uk/studentfunding

ACCOMMODATION

We manage approximately 7,500 self-catered rooms on campus for different budgets and requirements. Living on campus in your first year gives you the opportunity to meet people and form friendships whilst never being more than a short distance from your lectures or our amazing campus facilities. At Warwick, you’ll enjoy the freedom of independence living with the security of knowing you’re surrounded by people who can support you.

Living on campus:
warwick.ac.uk/accommodation

DISCOVER MORE

If you have questions about living and studying at Warwick, speak to our current students to get answers on:
• Campus life
• Accommodation
• Study support, wellbeing and more

Unibuddy:
warwick.ac.uk/study/unibuddy

Warwick Mathematics Institute
University of Warwick
CV4 7AL

warwick.ac.uk/mathematics

mathsadmissions@warwick.ac.uk

This course information was accurate at the time of publication (June, 2023). While the University tries to ensure that the information is accurate, it does not warrant that this is the case. The University may need to make changes including to the course content, syllabus, delivery, methods of assessment, or to comply with external accrediting or reviewing bodies. It is therefore important that you revisit the relevant course website before you apply and when you accept an offer to ensure you are viewing the most up to date information.

This information should not be construed as an offer and nor does it create a contract or other legally binding relationship between the University and you or a third party. For full terms and conditions, please visit warwick.ac.uk/ugtermsandconditions