## Lecture 11

# Joukowski's Lift Theorem

Last lecture we found that the lift generated by a rotating cylinder is

$$F = -\rho U \Gamma$$
.

In fact this expression can be applied to a much greater number of examples, as stated in *Joukowski's Lift Theorem*.

#### 11.1 Joukowski's Lift Theorem

Consider a steady flow (uniform at  $\infty$  with speed U in the x-direction) past a 2D body of arbitrary cross-section. Let the circulation around the body be  $\Gamma$ . Then the force  $\mathbf{F}$  acting on this body will have the following components,

$$F_x = 0 \longleftarrow$$
 (D'Alembert's Paradox) ,  
 $F_y = -\rho U\Gamma$ .

Before proving this theorem we need to consider another one.

### 11.2 Blasius's Theorem

Let there be a steady flow with complex potential  $\chi(z)$  about some fixed body which has a closed contour C at its boundary. Then

$$F_x - iF_y = \frac{1}{2}i\rho \oint_C (\partial_z \chi)^2 dz.$$

## 11.3 Proof of Blasius's Theorem

Consider figure 11.1. We have,

$$|\delta \mathbf{F}| = p|dz|,$$



Figure 11.1: Blasius's Theorem

and

$$dz = |dz|e^{i\theta}.$$

Therefore,

$$\delta \mathbf{F} = (-\sin\theta, \cos\theta)p|dz|,$$

and

$$\delta F_x - i\delta F_y = -p(\sin\theta + i\cos\theta)|dz| = -ipe^{-i\theta}|dz|.$$

Now because C is a streamline of the flow, we can write,

$$u = |\mathbf{u}| \cos \theta$$
, on  $C$ ,  
 $v = |\mathbf{u}| \sin \theta$ , on  $C$ ,

where  $|{\bf u}| = \sqrt{u^2 + v^2}$ . So,

$$\partial_z \chi = u - iv = |\mathbf{u}| e^{-i\theta}$$
, on  $C$ .

Taking into account this formula when using Bernoulli, we find,

$$\delta F_x - i\delta F_y = \left(\frac{1}{2}\rho|\mathbf{u}|^2 - K\right)ie^{-i\theta}|dz|$$
$$= \frac{1}{2}i\rho\left(\partial_z\chi\right)^2 e^{i\theta}|dz| - Ki(dx - idy),$$

where K is a constant. Finally, replacing  $|dz| \exp(i\theta)$  with dz and integrating (note the last term integrates to zero), we find

$$F_x - iF_y = \frac{1}{2}i\rho \oint_C (\partial_z \chi)^2 dz,$$

as required.

#### 11.4 Proof of Joukowski's Lift Theorem

Consider figure 11.2. The flow around our body will tend towards the velocity U at  $\infty$ .



Figure 11.2: Flow Past Body

Also note that we have no singularities. Therefore, the Laurent series for  $\partial_z \chi$  has the following form,

$$\partial_z \chi = U + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots (11.1)$$

This formula is valid for |z| > R, i.e. outside of the minimal circle enclosing the body.

Now, because there are no residues between C and C' (C' encloses the circle |z| = R), one can change C to C' in the Blasius Theorem and substitute in our series (11.1) for  $\partial_z \chi$ . Therefore, we obtain

$$F_x - iF_y = \frac{1}{2}i\rho \oint_{C'} \left( U + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots \right)^2 dz$$
$$= \frac{1}{2}i\rho 2\pi i 2U a_1 = -2\pi \rho U a_1.$$

To find  $a_1$ , we integrate (11.1) as follows,

$$2\pi i a_1 = \oint_{C'} \partial_z \chi dz$$
$$= \oint_C \partial_z \chi dz = [\chi]_C$$
$$= [\phi + i\psi]_C = [\phi]_C = \Gamma,$$

where  $[f]_C$  means change in f after one circuit along C. Note that  $[\psi]_C = 0$  because C is a streamline and  $\psi$  is constant on it. Therefore,

$$F_x - iF_y = i\rho U\Gamma,$$

as required.