
Problem set 1

MA433, Autumn term 2014

Questions with a * are good exercises to practice your estimation skills.

Problem 1. Verify the following statements, which we will be frequently using
throughout the course. All functions concerned are defined on T = R/Z. In other
words, they are periodic with periodicity 1.

(a)
∫ 1

0
f(x)dx =

∫ a+1

a
f(x)dx for any a.

(b)
∫ 1

0
f(x− y)g(y)dy =

∫ 1

0
f(y)g(x− y)dy, so we defined the convolution (f ∗ g)(x) as

either of them.

(c) If the n-th Fourier coefficients of f and g are an and bn, then show that the n-th
Fourier coefficient of f ∗ g is anbn.

Problem 2. Recall that the Fejér kernel is defined by

Fn(x) :=
1

n

n−1∑
k=0

Dk(x) =
1

n sin(πx)

n−1∑
k=0

sin
(
(2k + 1)πx

)
.

Compute the sine series and verify that Fn(x) = 1
n

( sin(nπx)
sin(πx)

)2
.

Problem 3. Evaluate the integral
∫ +∞
0

sinx
x
dx. (Hint: think about

∫ 1
2

− 1
2

Dn(x)dx. What

goes wrong if you consider
∫ 1

0
Dn(x)dx instead?)

Problem 4. Let f be a piecewise continuous function on [−1
2
, 1
2
], and let x be a jump

discontinuity of f . Modify the argument in class to show that the Cesàro mean of (Snf)(x)
converges to 1

2

(
f(x−)+f(x+)

)
, where f(x−) and f(x+) are the left and right limits of f

at x. Similarly, show that if f is smooth everywhere except having a jump discontinuity
at x, then (Snf)(x) converges to 1

2

(
f(x−) + f(x+)

)
.

Problem 5. Let f(x) = |x| for x ∈ [−1
2
, 1
2
].
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(a) Compute the Fourier coefficients of f .

(b) Evaluate the sums

+∞∑
n=1

1

(2n− 1)2
and

+∞∑
n=1

1

n2
.

(c) Evaluate the sums

+∞∑
n=1

1

(2n− 1)4
and

+∞∑
n=1

1

n4
.

Problem 6. This problem is about how the decay of Fourier coefficients of a function
is related to its regularity. For α ∈ (0, 1), we say f ∈ Cα(T) (or α-Hölder continuous) if
there exists C > 0 such that

|f(x+ h)− f(x)| < C|h|α (1)

for all x and h. For α > 1 but not integer, we say f ∈ Cα(T) if f is bαc times differentiable,
and its bαc-th derivative belongs to Cα−bαc(T). The situation for α being an integer is
slightly different: we say f ∈ Ck if f has k continuous derivatives. For example, C1 means
continuously differentiable, while the condition (1) with α = 1 means Lipschitz.

(a) Show that if f ∈ Cα(T) for α ∈ (0, 1), then its n-th Fourier coefficient has decay
an = O(|n|−α) (that is, supn |n|α|an| < +∞).

(b) Deduce that the conclusion of part (a) is true for every α > 1.

(c) In the case of integers, we can say more. Show that if f ∈ Ck, then an = o(|n|−k)
(that is, |n|kan → 0).

(d*) For α not being an integer, the decay rate cannot be improved. For example, let
α ∈ (0, 1) and consider the function

f(x) =
+∞∑
k=0

2−kαe2πi2
kx.

Then f ∈ Cα but an = n−α whenever n = 2k, so |n|α|an| does not converge to 0.

Problem 7. This problem investigates some partial converse result to the previous one.

(a) Let an be the n-th Fourier coefficient of f . Show that, if∑
n∈Z

|nan| < +∞,

then f is continuously differentiable. Deduce that more generally, if∑
n∈Z

|n|`|an| < +∞,
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then f ∈ C`(T). In particular, this implies that if an = O(|n|−α) with α > `+ 1, then f
is ` times continuously differentiable.

(b) We could weaken the assumption if we do not require the derivative to be
continuous. Show that if an = O(|n|−α) where α > 3

2
, then f is differentiable and

f ′ ∈ L2(T). More generally, for any integer ` < α− 1
2
, the `-th derivative f (`) exists, and

belongs to L2(T).

Problem 8. This problem outlines a proof of the existence of a continuous function
whose Fourier series diverges at a given point. We make use of the uniform boundedness
principle, which we state below.

Let X be a Banach space, and Y be a normed vector space. Suppose T is a collection
of continuous linear operators from X to Y . If for all f ∈ X we have

sup
T∈T
‖T (f)‖Y < +∞,

then we have

sup
T∈T
‖T‖ < +∞,

where ‖T‖ is defined as sup‖f‖X=1 ‖T (f)‖Y .

Now fix x ∈ T, and we want to give the existence of a continuous function f such that
(Snf)(x)→ +∞.

(a) Let X = C(T), the space of continuous functions on T with uniform norm, and
Y = R. For any n, let Tn,x denote the map C(T) 7→ R such that

Tn,x(f) = (Snf)(x) =

∫ 1
2

− 1
2

f(x− y)Dn(y)dy.

Convince yourself that Tn,x is a linear.

(b) The norm on C(T) is the uniform norm defined by ‖f‖ = supx∈T |f(x)|. Why do we
have

‖Tn,x‖ := sup
‖f‖=1

|Tn,x(f)| =
∫ 1

2

− 1
2

|Dn(y)|dy?

(A graphic explanation would be sufficient. )

(c*) Let T denote the collection of operators {Tn,x}. Show that
∫ 1

2

− 1
2

|Dn(y)|dy grows

like log n, so

sup
T∈T
‖T‖ = +∞.

Conclude that there exists f ∈ C(T) such that Snf diverges at x.
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