
Making Webpages with
Interactive Content

Paul Brown
p.e.brown@warwick.ac.uk

Contents
� Sitebuilder – Warwick’s In house development

platform.
https://warwick.ac.uk/services/its/servicessupport/web/s
itebuilder2/

� Linux and Windows hosting service – Set up your
own server from scratch
https://warwick.ac.uk/services/its/servicessupport/server
s/serverprovisioning/

https://warwick.ac.uk/services/its/servicessupport/servers/serverprovisioning/
https://warwick.ac.uk/services/its/servicessupport/servers/serverprovisioning/

Sitebuilder
� No software to download

� Ready made templates

� Components Editor allows you add and arrange text,
images, video etc…

� Accessibility checker

� Access controls

� Version control

� Search engine optimisation

Sitebuilder components
� WYSIWYG editor

� Forms for data collection

� News & Events streams

� Discussion forums

� Calendars

Sitebuilder
� Request a page by contacting parent page owner

� Choose a template layout, ready made or design
your own

Select Components Editor

Fill in some basic details such as name and title

Go to Edit centre content

Editing centre content
� Can be edited like a word processor

Editing centre content
� Or switch to html view

More Editing

• Properties – page heading, search engine options, page template
• Permissions – Any, all Warwick, staff only, groups eg department. Levels

are view, edit , admin and password protected

More Editing
� Sub-pages displays a list of all sub-pages of the

current page. Here you can add a new sub-page or
rename/delete

� Files displays a list of all uploaded files belonging to
this page. You can upload another or rename/delete

� History allows the page to be restored to a previous
version

News and events
� Select News template. Creates a blank page with a

button to add new items to the list

� Item has an abstract and details

� News items can be filtered by tag

� Can choose how many to show

� Calendar works in a similar way

� Also social media feeds

Forms and data
� Select Form page template

� There are links to add text boxes, file upload
controls, drop-down lists, option buttons and
checkboxes

� Some non-standard compound controls such as
address fields, date picker, rating controls, online
payment fields, personal details fields

� The form owner can view submissions and
download as a csv or XML file

Forms and data

Appears in submissions file

Displayed on page

Forms and data

Accessibility
Public sector bodies websites must comply with ‘Web
Content Accessibility Guidelines 2.2’ at level ‘AA’

https://warwick.ac.uk/services/its/servicessupport/web
/sitebuilder2/best-practice/accessibility/

Creating your own
webserver

https://warwick.ac.uk/services/its/servicessupport/servers/server
provisioning/

� RHEL 9 or Windows 2019 virtual machine

� Unsuitable for computationally intensive work, eg modelling
and simulation, machine learning

� Nightly snapshots taken

� Select webserver and database options or request your own
requirements, eg R-Shiny, php

� Containers specifically excluded, eg Docker, Singularity

� No root access is granted

https://warwick.ac.uk/services/its/servicessupport/servers/serverprovisioning/
https://warwick.ac.uk/services/its/servicessupport/servers/serverprovisioning/

Software Available
� Red Hat 9

� Apache

� MariaDB, PostgreSQL
� PHP, Python 3, Ruby
� GitLab
� R-Shiny Server

� Windows Server 2019
� IIS
� MS SQL Server 2019

Creating your own
webserver using Apache

� Webserver document root
/var/www/html (Linux)
/Library/WebServer/Documents (macOS)

� Store any private data, such as passwords, outside this
to stop the web server accidentally displaying it

� Web server user owning httpd process needs at least
read access to this

httpd, apache, www, wwwuser

Server–side scripting
� Code which is executed by the server, before output is sent to the

client browser

� Produces responses customised to the user’s request

� Code remains on the server and is hidden from the user

� Downside is that it increases network traffic and load on the
server

� Upside is when it requires access to data, this can remain on
server

Simple server–side scripting
The document root in /var/www/html

Place index.html or index.php in here

One or more configuration files, /etc/httpd/httpd.conf

You can override its contents using .htaccess files in your site folder

Log files are in /var/log/httpd/

Your site will be at https://server-name.lnx.warwick.ac.uk

https://server-name.lnx.warwick.ac.uk/

Simple server-side scripting
PHP can be installed and configured by IDG

Configuration file is /etc/php-fpm.conf

The error log is found at

/var/log/php-fpm/www-error.log

By default PHP cannot send main, but his can be
activated on request

Server–side scripting
<?php
 session_start();
 $list_of_countries = Array();
 $countries_file = "countries.json";
 if (file_exists($countries_file)) {
 //process data
 $list_counties = ……
 echo json_encode($list_of_countries);
 }
?>

<html>
 ….
 <body>
 <?php echo “Welcome “.$username ?>
 </body>

</html>

Client-side scripting
� Executed on the client browser, after being sent from the server

� Often used to respond to user actions/events

� Code is embedded in the page and sent to the user

� Offloading processing to the client reduces network traffic and load on
the server, and can make websites independent of a network
connection. Javascript can even be used to write desktop applications

� Downsides are the limitations on what can be done on then client,
and cross-browser compatibility

� JavaScript by far the most common platform

� Many libraries available, eg jQuery and react.js for user interfaces,
vue.js and bootstrap for presentation, d3 for plotting data

Client-side scripting
� Nothing to install, all browsers have a JavaScript

engine

� Embed your code in a <script> tag
<script type = ‘text/javascript’>

function displayMessage(msg) {
alert(msg);

}
</script>

� Or in a separate file
<script src = ‘js/myscript.js’></script>

Example – a login form
<script src=“login.js"></script>
<div class="loginform">

 <form method="post” action=“checklogin.php"
onSubmit="return check_form();">

 <h2>Welcome to HATMEPP</h2>
 <h3>Please log in to continue</h3>

 <input type="text" name=“name” id=“name”>
 <input type="password” name=“pword” id=“pword”>
 <input type="submit” value=“Login”>

</form>

<div>

</div>
</div>

login.html

Example – a login form
On the client, can access document object model (DOM)

login.js

function check_form (){

 var name = document.getElementById(“name”).value;

if(name == ‘’){

 document.getElementById(“name”).style.border = “red”;
 alert("Please enter a valid username and password.");
 return false;

}else{
document.getElementById(“name”).style.border = “lightgrey”;

 return true;
}

}

Example – a login form

� Form ‘action’ attribute indicated where to send
data, and use of POST method

� Always use POST for sensitive data, the alternative
GET is not secure. It appends data to the URL

https://myserver.org/checklogin.php?username=pbrown&pass
word=mysecretpassword

Example – a login form
On the server
checklogin.php

<?php

 require(“/var/www/private/dbase.php”)

 $username = $_POST[”name"];
 $pword = $_POST[”pword"];
 $result = db_login($username, $pword);
 if (!is_null($result)){

session_start();
 $_SESSION[‘name'] = $username;
 header(“Location: mainpage.php”);
 }else
 header(“Location: login.html”);

?>

mainpage.php

<?php
 session_start();
 if(!isset($_SESSION[‘name'])){
 header("Location:login.html");

exit;
 }
?>
<html>
 <head>
 …
 </head>
 <body>
 <?php
 echo “Hello ”.$_SESSION[‘name’];
 ?>
 …
 </body>
</html>

Web Libraries and
Frameworks

� JavaScript libraries let you create components and build webpages
� jQuery general purpose
� React or bootstrap for UI development

� Frameworks can be used for full stack development, front end and
backend.
� They handle routing and data fetching, asynchronous functions
� Provide a set of templates you replace with your own structures
� Next.js is based on React

� Frameworks can provide their own simple web server, removing need
for apache
� Nodejs runtime environment
� Python eg Flask
� R/Shiny-R

Boostrap can re-organize the
GUI to fit screens of different
sizes or orientations

React lets you build a user interface from individual
components. Combine them to create entire web pages and
applications.

Include some JavaScript logic…

D3 binds data to HTML elements, which can be
automatically updated as data changes

Helpful resources
� For sitebuilder queries webteam@warwick.ac.uk

� For Warwick linux hosting
https://warwick.ac.uk/services/its/servicessupport/u
nix/linux_hosting

� www.w3schools.com for html, css, javascript, php,
python and lots more

mailto:webteam@warwick.ac.uk
http://www.w3schools.com

