Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?

Questions with a (*) next to them form part of homework 1. Due in 20/10/2014. [Q 3]

- 1. What is a statistic?
- 2. In R, load the iris dataset, and draw boxplots for each variable data(iris)

boxplot(iris)

What do the different lines and circles represent?

- 3. [*] In R, load the faithful dataset (Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA). Look at the eruption times r=faithful\$eruptions.
 - (a) Draw a QQ-plot. Does the data look normally distributed.
 - (b) Draw a QQ-plot for only those eruptions that last longer than 3.2 minutes.
 - (c) Draw a QQ-plot for only those eruptions that less than 3.2 minutes.
 - (d) What do you conclude about the data?
- 4. In R, let $n \geq 2$ denote an integer. Draw n samples from the $N(\mu, \sigma^2)$ distribution and calculate the statistic

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Repeat this N times (with perhaps n = 5, $N = 10^4$). Compare the empirical distribution of the N sample means with the N(0,1) distribution and the t_{n-1} distribution. How large does n have to be before the distributions are hard to distinguish?

- 5. Consider drawing a sample of size n from Uniform[0,1] distribution and calculate the sample median.
 - (a) Does the sample median converge in probability? If so, to what?
 - (b) Does the sample median converge almost surely if you increase n by adding items to the sample one by one? [Hint: If a sequence of (non-necessarily independent) events A_1, A_2, \ldots have probabilities $\mathbb{P}(A_n) \leq n^{-2}$ then only finitely many of the A_n will occur (almost surely).]
- 6. Derive the formula for the pdf of the k-th order statistic

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j}.$$

$$F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} [F_X(x)]^k [1 - F_X(x)]^{n-k}$$

- 7. Consider the Poisson(θ) distribution.
 - (a) In R, sample 4 items with $\theta = 2.7$.
 - (b) Plot the likelihood for θ in the range one to five.
 - (c) Can you explain the position of the maximum in terms of the sample mean?
 - (d) In R, sample 100 items with $\theta = 2.7$.
 - (e) Plot the log of the likelihood for θ in the range one to five.
 - (f) Can you explain the position of the maximum in terms of the sample mean?