Networks and Random Processes

Class test

The class test counts $25 / 100$ module marks, [x] indicates weight of each question.

1. (a) State the weak law of large numbers and the central limit theorem.
(b) Define the Erdős-Rényi random graph models $\mathcal{G}_{N, K}$ and $\mathcal{G}_{N, p}$, including the set of all possible graphs and the corresponding probability distribution.
For both models, give the distribution of the total number of edges.
2. Consider the undirected graph G with adjacency matrix $\quad A=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
(a) Draw the graph G. Identify a clique of vertices and draw a spanning tree of G.
(b) Give the matrix of vertex distances $d_{i j}$ and compute the characteristic path length $L(G)$ and the diameter $\operatorname{diam}(G)$ of G.
(c) Give the degree sequence $\left(k_{1}, \ldots, k_{4}\right)$ and compute the degree distribution $p(k)$ and the average degree $\langle k\rangle$ of G.
(d) Compute the global clustering coefficient C, and the average $\left\langle C_{i}\right\rangle$ of the local clustering coefficients C_{i}.
3. (a) Define the configuration model with N vertices and degree sequence D.
(b) Consider the following degree sequences

$$
(1,2,3,1), \quad(1,2,3,4), \quad(4,4,4,4), \quad(1,2,2,1), \quad(1,1,1,1) .
$$

Decide whether the sequence is graphical. If yes, draw a planar graph with that sequence. If the graph is connected, draw the dual (multi-)graph.
(c) Which of the graphs you drew in (b) is a triangulation?

Give an example of a non-planar graph by drawing it and giving its adjacency matrix.
4. Consider the simple symmetric ($p=1 / 2$) random walk ($X_{n}: n \in \mathbb{N}_{0}$) in discrete time, on the state space $S=\{-N, \ldots, N\}$ with absorbing boundary conditions.
(a) Sketch the one-step transition matrix P. Is the process ergodic (justify your answer)? Give a formula for all stationary distributions π. Are they reversible?
(b) For $A=\{-N, N\}$ we know that $h_{k}^{A}:=\mathbb{P}\left[X_{n} \in A\right.$ for some $\left.n \geq 0 \mid X_{0}=k\right]=1$, i.e. the process gets absorbed with probability 1 in a point of A for all initial conditions k. Let $T^{A}=\min \left\{n \geq 0: X_{n} \in A\right\}$ be the corresponding absorption time, and $\tau_{k}^{A}=$ $\mathbb{E}\left[T^{A} \mid X_{0}=k\right]$ its expected value starting in k. Show that

$$
\tau_{k}^{A}=\frac{1}{2} \tau_{k-1}^{A}+\frac{1}{2} \tau_{k+1}^{A}+1, \quad k=-N+1, \ldots, N-1 .
$$

What are the boundary conditions of this recursion?
(c) The solution of the above recursion is of the form $\tau_{k}^{A}=a k^{2}+b k+c$.

Determine $a, b, c \in \mathbb{R}$ and compute τ_{0}^{A}. (Hint: use the symmetry of the problem.)
5. Consider a birth-death process $\left(X_{t}: t \geq 0\right)$ with state space $S=\mathbb{N}_{0}=\{0,1, \ldots\}$ and transition rates

$$
x \xrightarrow{\alpha_{x}} x+1 \quad \text { for all } x \in S, \quad x \xrightarrow{\beta_{x}} x-1 \quad \text { for all } x \geq 1,
$$

where we take $\alpha_{x}=\alpha$ and $\beta_{x}=x \beta$ for all $x \geq 0$.
(This is called an $M / M / \infty$ queue, where customers arrive at rate α and each of them is served independently by one of the infinitely many servers with rate β.)
(a) Under which conditions on $\alpha, \beta \geq 0$ is the process irreducible?

Write down the master equation for $p_{t}(x):=\mathbb{P}\left[X_{t}=x\right]$ for all $x \in S$.
(b) Use detailed balance to find an explicit formula for the stationary distribution π, which does not contain any summations.
Under which conditions on $\alpha, \beta \geq 0$ can it be normalized?
(c) Use the master equation to show that $\mu_{t}:=\mathbb{E}\left[X_{t}\right]=\sum_{x \in S} x p_{t}(x)$ fulfills

$$
\frac{d}{d t} \mu_{t}=\alpha-\beta \mu_{t}
$$

and solve this equation for general initial condition $\mu_{0} \geq 0$.
6. Consider the voter model $\left(\eta_{t}: t \geq 0\right)$ on the state space $\{0,1\}^{\Lambda}$ with $\Lambda=\{1, \ldots, L\}$ and transition rates

$$
c\left(\eta, \eta^{i}\right)=\sum_{j \neq i} q(j, i)(\eta(i)(1-\eta(j))+\eta(j)(1-\eta(i))) \quad \text { for all } i \in \Lambda
$$

where individual j influences the opinion of individual i with rate $q(j, i) \geq 0$. We use the standard notation
$\eta^{i}(k)=\left\{\begin{array}{c}\eta(k), k \neq i \\ 1-\eta(k),\end{array} \quad k=i \quad\right.$ for configurations where the opinion of individual i is flipped.
(a) Is the process ergodic (justify your answer)?

Give a formula for all stationary distributions of the process, assuming that $q(j, i)$ is irreducible. Explain how this formula has to be adapted if $q(j, i)$ is not irreducible.
(b) Consider the process on the complete graph with L individuals, i.e. $q(j, i)=1$ for all $i \neq j$ and let

$$
N_{t}:=\sum_{i=1}^{L} \eta_{t}(i) \quad \text { be the number of individuals of opinion } 1 \text { at time } t
$$

Derive the transition rates $g(n, m)$ for $n, m \in\{0, \ldots, L\}$ for the process $\left(N_{t}: t \geq 0\right)$ (computation from $c\left(\eta, \eta^{i}\right)$ or intuitive explanation is fine).
(c) Give the state space S and the absorbing states of the process $\left(N_{t}: t \geq 0\right)$ and write down the master equation for $p_{t}(i):=\mathbb{P}\left[N_{t}=i\right]$ for all $i \in S$.
Give a formula for all stationary distributions.
(d) Use the symmetry of the rates $g(n, m)$ to argue that $\mathbb{E}\left[N_{t}\right]$ does not change in time.

Starting with the initial condition $N_{0}=L / 2$, how can this be interpreted in the context of absorption and the stationary distributions?

