Stochastic Modelling and Random Processes

Hand-out 4
Random sequential update, Gillespie algorithm

The properties of Poisson processes (see hand-out 3) can be used to set up efficient sampling algorithms for stochastic particle systems. Here we focus on a system with state space \(S = \{0, 1\}^\Lambda \) with lattice/population set \(\Lambda \) and flip dynamics (for example the contact process), and sketch two algorithms: the random sequential update, and the rejection-free Gillespie algorithm.

Gillespie algorithm (direct simulation).

Pro: is rejection-free, i.e. a transition occurs in every step

Con: can be computationally heavy since rates and probabilities are computed in each step

\(\rightarrow \) works best for processes with very heterogeneous transition rates.

The sampling rate \(R(\eta) = \sum_{x \in \Lambda} c(\eta, \eta^x) \) is state-dependent and needs updating in each time step.

Pick \(\eta_0 \) from the initial distribution and set \(t = 0 \). Then repeat iteratively:

1. compute/update the sampling rate \(R(\eta) \) and probabilities \(p_x(\eta) \).
2. update the time counter by \(t+ = \text{Exp}(R(\eta)) \).
3. pick a site \(x \) with probability \(p_x(\eta) = c(\eta, \eta^x)/R(\eta) \).
4. update (flip) site \(x \).

So in total, the transition \(\eta \rightarrow \eta^x \) happens with the correct rate \(R(\eta) \frac{c(\eta, \eta^x)}{R(\eta)} = c(\eta, \eta^x) \).

Random sequential update (RSU).

Pro: works with fixed sampling rates and probabilities that can be pre-computed and stored, simple to implement and can be computationally cheap

Con: if transition rates are heterogeneous, proposed updates may be rejected with high probability which leads to oversampling and waste of computational time

\(\rightarrow \) works best for processes with homogeneous, similar transition rates.

To resolve the full dynamics on site \(x \in \Lambda \), the (fixed) sampling rate should be \(r_x = \max_{\eta \in S} c(\eta, \eta^x) \), determined by the fastest process. The independent PPs on each site add up, and the next possible event in the whole system is sampled at rate \(R = \sum_{x \in \Lambda} r_x \). By the thinning property, the probability that it happens on site \(x \) is given by \(p_x = r_x/R \). This leads to the following algorithm:

Pick \(\eta_0 \) from the initial distribution and set \(t = 0 \). Then repeat iteratively:

1. update the time counter by \(t+ = \text{Exp}(R) \).
2. pick a site \(x \) with probability \(p_x \).
3. update (flip) site \(x \) with probability \(c(\eta, \eta^x)/r_x \).

So in total, the transition \(\eta \rightarrow \eta^x \) happens with the correct rate \(R \frac{r_x c(\eta, \eta^x)}{r_x} = c(\eta, \eta^x) \).

For example, for the 1D contact process on \(\Lambda = \{1, \ldots, L\} \) with periodic boundaries and rates

\[
c(\eta, \eta^x) = \delta_{1,\eta(x)} + \lambda\delta_{0,\eta(x)}(\delta_{1,\eta(x-1)} + \delta_{1,\eta(x+1)})
\]

we have \(r_x = r = \max\{1, 2\lambda\} \), and thus \(p_x = 1/L \) choosing sites uniformly and \(R = rL \).
Computational complexity.

To simulate one unit of real time of the process the update loops in both algorithms are called $O(L)$ times, assuming that $R(\eta)$ or R are of order $|\Lambda| = L$. Steps (1) and (3) need $O(1)$ steps to complete. Implementing a binary decision tree for the probabilities $p_x(\eta)$ or p_x step (2) can be completed in $O(|\log L|)$ operations. For Gillespie, the decision tree depends on the current state η and has to be updated. Since transitions are only local in nature (involving a fixed number of sites independently of L), this can be completed again in $O(|\log L|)$ steps, so

\[\text{computational complexities are } O(L \log L) \quad \text{for both algorithms}. \]

Initialization of η_0 and the decision tree takes of order L steps in both cases. By symmetries of the model (2) is often a uniform choice for RSU which needs only $O(1)$ operations, improving the complexity to $O(L)$. But in practice, the acceptance probability $c(\eta, \eta^x)/r_x$ of proposed moves determines whether this is more efficient than Gillespie.

Simplified time counter.

In both algorithms, $R, R(\eta) = O(L)$ are usually of order of the system size, so the increments $\tau_i \sim \exp(R)$ of the time counter are of order $1/L$. By the scaling property $\alpha \exp(\beta) \sim \exp(\beta/\alpha)$ of exponential rv’s (check!), we have

\[\tau_i \sim \exp(R) \sim \frac{1}{R} \tilde{\tau}_i \quad \text{with normalized } \tilde{\tau}_i \sim \exp(1). \]

To simulate up to a time $T = O(1)$ we therefore need of order $RT = O(L)$ sampling increments τ_i. The time counter of the simulation is then

\[t = \sum_{i=1}^{RT} \tau_i = \frac{1}{R} \sum_{i=1}^{RT} \tilde{\tau}_i = T + O(L^{-1/2}) \rightarrow T \quad \text{as } L \rightarrow \infty, \]

by the law of large numbers. So if we just replace the increments τ_i by their mean $1/R$, i.e. use

(1’ update the time counter by $t+ = 1/R$)

instead of the computationally more expensive (1), the error in t is of order $L^{-1/2}$ by the central limit theorem. This is usually negligible for large L unless one is interested in very precise time statistics.