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Stochastic Modelling and Random Processes

Problem sheet 3

Sheet counts 50/150 homework marks, [x] indicates weight of the question.
Please put solutions in my pigeon hole or give them to me by Friday, 17.01.2020, 12pm noon.

3.1 Geometric Brownian motion [15]
Let (Xt : t ≥ 0) be a Brownian motion with constant drift on R with generator

(Lf)(x) = µ f ′(x) +
1

2
σ2 f ′′(x) , µ ∈ R, σ > 0 ,

and initial condition X0 = 0. Geometric Brownian motion is defined as

(Yt : t ≥ 0) with Yt = eXt .

(a) Show that (Yt : t ≥ 0) is a diffusion process on [0,∞) and compute its generator.
Write down the associated SDE and Fokker-Planck equation.

(b) Use the evolution equation of expectation values of test functions f : R→ R

d

dt
E
[
f(Yt)

]
= E

[
Lf(Yt)

]
,

to derive ODEs for the mean m(t) := E[Yt] and the second moment m2(t) := E[Y 2
t ].

(No need to solve the ODEs).

(c) Under which conditions on µ and σ2 is (Yt : t ≥ 0) a martingale?
What is the asymptotic behaviour of the variance v(t) = m2(t)−m(t)2 in that case?

(d) Show that δ0 is the unique stationary distribution of the process on the state space [0,∞).
Under which conditions on µ and σ2 does the process with Y0 = 1 converge to the
stationary distribution?
Under which conditions on µ and σ2 is the process ergodic? Justify your answer.

(e) For σ2 = 1 choose µ = −1/2 and two other values µ < −1/2 and µ > −1/2. Simulate
and plot a sample path of the process with Y0 = 1 up to time t = 10, by numerically
integrating the corresponding SDE with time steps ∆t = 0.1 and 0.01.

3.2 Barabási-Albert model [9]
Consider the Barabási-Albert model starting with m0 = 5 connected nodes, adding in each
timestep a node linked tom = 5 existing distinct nodes according to the preferential attachment
rule. Simulate the model for N = |V | = 1000, with at least 20 independent realizations.

(a) Plot the tail of the degree distribution in a double logarithmic plot for a single realization
and for all 20, and compare to the power law with exponent −2 (all in a single plot).

(b) Compute knn(k) = E
[∑

i∈V knn,iδki,k

/∑
i∈V δki,k

]
where knn,i = 1

ki

∑
j∈V aijkj ,

and decide whether the graphs are typically uncorrelated or (dis-)assortative.

(c) Plot the spectrum of the adjacency matrix A = (aij) using all realizations with a kernel
density estimate, and compare it to the Wigner semi-circle law with σ2 = var[aij ].
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3.3 Erdős Rényi random graphs [12]
Consider the Erdős Rényi random graph model and simulate at least 20 realizations of GN,p

graphs with p = pN = z/N , z = 0.1, 0.2, . . . , 3.0 for N = 100 and N = 1000.

(a) Plot the average size of the two largest components in each realization divided by N ,
against z for both values ofN in a single plot (4 data series in total, use different colours).
Use all 20 (or more) realizations and include error bars indicating the standard deviation.

(b) ForN = 1000 plot the average local clustering coefficient 〈Ci〉 against z using all 20 real-
izations and i = 1, . . . , N for averaging, and including error bars indicating the standard
deviation for all 20N data points.

(c) For N = 1000 and your favourite value of z ∈ [0.5, 2], plot the degree distribution p(k)
against k = 0, 1, . . . using all 20 realizations, and compare it to the mass function of the
Poi(z) Poisson distribution in a single plot.

(d) Consider z = 0.5, 1.5, 5 and 10. Plot the spectrum of the adjacency matrix A using all 20
realizations with a kernel density estimate, and compare it to the Wigner semi-circle law.

3.4 Contact process [14]
Consider the CP (ηt : t ≥ 0) on the complete graph Λ = {1, . . . , L} (i.e. q(i, j) = λ for all
i 6= j) with state space S = {0, 1}L and transition rates

c(η, ηi) = η(i) + λ
(
1− η(i)

)∑
j 6=i

η(j) ,

and generator given by (Lf)(η) =
∑

i∈Λ c(η, η
i)
(
f(ηi)− f(η)

)
.

(a) Let N(η) :=
∑

i∈Λ η(i) ∈ {0, . . . , L} be the number of infected individuals in configu-
ration η. For any function f : {0, . . . , L} → R show that we can write for the composed
function f ◦N : S → R

(Lf ◦N)(η) = λ(L−N)N
[
f(N + 1)− f(N)

]
+N

[
f(N − 1)− f(N)

]
for all η ∈ S, where we use the simplified notation N = N(η) on the right-hand side.
Hint: Use N(ηi) = N(η)± 1 if η(i) = 0, 1, respectively, and

(
1− η(i)

)
η(i) = 0.

Convince yourself that this implies that (Nt : t ≥ 0) with Nt := N(ηt) is a Markov chain
on {0, . . . , L} and write down its generator Lf(n).

(b) Is the process (Nt : t ≥ 0) irreducible, does it have absorbing states?
Give all stationary distributions. Is the process ergodic?

(c) Assume that E
(
Nk

t

)
= E(Nt)

k for all k ≥ 1. This is called a mean-field assumption,
meaning basically that we replace the random variable Nt by its expected value.
Use this assumption and the usual evolution equation as in Q2.1(b) to derive the mean-
field rate equation for ρ(t) := E(Nt)/L,

d

dt
ρ(t) = h

(
ρ(t)

)
:= −ρ(t) + Lλ

(
1− ρ(t)

)
ρ(t) .

(d) Analyze this equation by finding the stable and unstable stationary points via h(ρ∗) = 0,
and give the limiting behaviour of ρ(t) as t→∞ depending on the parameter λ > 0.



3.5 Simulation of CP* not for credit

Consider the contact process (ηt : t ≥ 0) as defined in Q2.4, but now on the one-dimensional
lattice ΛL = {1, . . . , L} with connections only between nearest neighbours, i.e. q(i, j) =
q(j, i) = λδj,i+1, and periodic boundary conditions.
The critical infection rate λc can be defined such that the infection on the infinite lattice Λ = Z
started from the fully infected lattice dies out for λ < λc, and survives for λ > λc. It is known
numerically up to several digits, depends on the dimension, and is around 1.65 in our case.
All simulations of the process should be done with initial condition η0(i) = 1 for all i ∈ Λ.

(a) Simulate the process for L = 128, 256, 512, 1024 and parameters λ = 1.62, . . . , 1.68
with 0.01 increments (7 values) with at least 500 realizations each.
For each L, plot the number of infected individuals Nt =

∑
i∈ΛL

ηt(i) averaged over
realizations as a function of time up to time 10×L for all values of λ as above in a single
double-logarithmic plot.
Use the curvature of the plots to estimate λc(L).
Plot your estimates of λc(L) with error bars ±0.01 against 1/L. Extrapolate to 1/L→ 0
to get an estimate of λc = λc(∞) with a reasonable error bar.
This approach is called finite size scaling, in order to correct for systematic finite size
effects which influence the critical value.

(b) Let T be the hitting time of the absorbing state η = 0, i.e. the lifetime of the infection.
Measure the lifetime of the infection for λ = 1 and λ = 1.8 by running the process until
extinction of the epidemic.

For λ = 1 < λc we expect T ∝ C logL+small fluctuations for some C > 0. So use
large system sizes e.g. L = 128, 256, 512, 1024 (or larger), confirm that E(T ) scales like
logL and determine C by averaging at least 200 realizations of T for each L.
Then shift your data Ti for each L by Ti − E(T ) and plot the ’empirical tail’ of the
distribution of the shifted data, comparing to the Gumbel distribution (all in one plot
with log-scale on the y-axis).
Look up the Gumbel distribution on Wikipedia, with mean 0 only one parameter needs
fitting. Why could this be a good model for the noise here? Very short answer relating to
extreme value statistics (see google) suffices.

For λ = 1.8 > λc we expect T ∼ Exp(1/µ) to be an exponential random variable
with mean µ = E(T ) ∝ eCL for some C > 0. So use *small* system sizes e.g. L =
8, 10, 12, 14 (see how far you can go), confirm that E(T ) scales like eCL and determine
C by averaging at least 200 realizations of T .
Then rescale your data Ti for each L by Ti/E(T ) and plot the ’empirical tail’ of the
distribution of the rescaled data, comparing to the theoretical tail e−t (all in one plot with
log-scale on the y-axis).

Recall: The empirical tail of data T = (T1, . . . , TM ) is the statistic
tailt(T ) = 1

M

∑M
i=1 1Ti>t. This decays from 1 to 0 as a (random) function of time t.


