Stochastic Modelling and Random Processes

Assignment 3

This assignment counts for 1/3 of your homework marks. It is marked out of 100, and [x] indicates weight of each question.

Please submit your solutions via [this link] by Friday, 17.12.2021, 12 noon UK time.

All plots must contain axis labels and a legend (can be added by hand if necessary). Use your own judgement to find reasonable and relevant plot ranges.

1 Erdős Rényi random graphs

Consider the Erdős-Rényi random graph model and simulate at least 20 realisations of $G_{N,p}$ graphs with $p = p_N = z/N$, for $z = 0.1, 0.2, \ldots, 3.0$ for $N = 100$ and $N = 1000$.

(a) Plot the average size of the two largest components in each realisation divided by N, against z for both values of N in a single plot (4 data series in total, use different colours). Use all 20 (or more) realisations and include error bars indicating the standard deviation.

(b) For $N = 1000$, plot the average local clustering coefficient $\langle C_i \rangle$ against z using all 20 realisations and $i = 1, \ldots, N$ for averaging, and including error bars indicating the standard deviation for all $20N$ data points.

(c) Use results in lectures to state what is the expected number of edges, as well as the expected average degree as a function of z and N and plot these as a function of z for the two values of N, comparing your results with the expected ones. Include error bars to indicate the standard deviation for your data points.

(d) For $N = 1000$ and your favourite value of $z \in [0.5, 2]$, plot the degree distribution $p(k)$ against $k = 0, 1, \ldots$ using all 20 realisations, and compare it to the mass function of the Pois(z) Poisson distribution in a single plot.

(e) Consider $z = 0.5, 1.5, 5$ and 10. Plot the spectrum of the adjacency matrix A using all 20 realisations with a kernel density estimate, and compare it to the Wigner semi-circle law. Comment on your results based on what you expect from the lectures.
2 Barabási-Albert model

Consider the Barabási-Albert model starting with \(m_0 = 5 \) connected nodes, adding in each timestep a node linked to \(m = 5 \) existing distinct nodes according to the preferential attachment rule. Simulate the model for \(N = |V| = 1000 \), with at least 20 independent realisations.

(a) Plot the tail of the degree distribution in a double logarithmic plot for a single realisation and for the average of all 20 realisations, and compare to the power law with exponent \(-2\) (all in a single plot).

(b) Compute the nearest neighbour

\[
k_{nn}(k) = E \left[\sum_{i \in V} k_{nn,i} \delta_{k_i,k} / \sum_{i \in V} \delta_{k_i,k} \right], \quad \text{where} \quad k_{nn,i} = \frac{1}{k_i} \sum_{j \in V} a_{ij} k_j,
\]

and decide whether the graphs are typically uncorrelated or (dis-)assortative.

(c) Plot the spectrum of the adjacency matrix \(A = (a_{ij}) \) using all realisations with a kernel density estimate, and compare it to the Wigner semi-circle law with \(\sigma^2 = \text{var}[a_{ij}] \). Comment on your results.

3 Dorogovtsev-Mendes-Samukhin model

Consider the following generalisation of the Barabási-Albert model: As before, start with \(m_0 = 5 \) connected nodes, but in each timestep add a node \(j \), linked to \(m = 5 \) existing distinct nodes according to the new probability (to be adapted to avoid double edges)

\[
\pi_{j \to i} = \frac{k_0 + k_i}{\sum_{i \in V(t)} (k_i + k_0)}, \quad k_0 \in \mathbb{N}_0.
\]

Simulate the model for three different values of \(k_0 = 1, 2, 4 \) to generate graphs of size \(N = |V| = 1000 \), with 20 independent realisations in each case.

(a) Plot the tail of the degree distribution in a double logarithmic plot for a single realisation and for the average of all 20 realisations. For each \(k_0 \) compare the tail to the power law with exponent \(-2 - k_0/m\).

(b) Compute the nearest neighbour

\[
k_{nn}(k) = E \left[\sum_{i \in V} k_{nn,i} \delta_{k_i,k} / \sum_{i \in V} \delta_{k_i,k} \right], \quad \text{where} \quad k_{nn,i} = \frac{1}{k_i} \sum_{j \in V} a_{ij} k_j,
\]

and decide whether the graphs are typically uncorrelated or assortative.

(c) Plot the spectrum of the adjacency matrix \(A = (a_{ij}) \) using all realisations with a kernel density estimate, and compare it to the Wigner semi-circle law as before. Comment on your results.