
Notes 8: Solving ODEs

8.1 Ordinary differential equations and dynamical systems
Differential equations are one of the basic tools of mathematical modelling and no discussion of com-
putational methods would be complete without a discussion of methods for their numerical solution..
An ordinary differential equation (ODE) is an equation involving one or more derivatives of a function
of a single variable. The word “ordinary” serves to distinguish it from a partial differential equation
(PDE) which involves one or more partial derivatives of a function of several variables. Let u be a
real–valued function of a single real variable, t, and F be a real–valued function of t, u(t) and its first
m−1 derivatives. The equation

dmu

dtm
(t) = F

�
t, u(t),

du

dt
(t), . . . ,

dm−1u

dtm−1
(t)

�
(8.1)

is an ordinary differential equation of order m. Equations for which F is has no explicit dependence
on t are referred to as autonomous. The general solution of an mth order ODE involves m constants
of integration. We frequently encounter three types of problems involving differential equations:

• Initial Value Problems (IVPs)
The value of u(t) and a sufficient number of derivatives are specified at an initial time, t = 0 and
we require the values of u(t) for t > 0.

• Boundary Value Problems (BVPs)
Boundary value problems arise when information on the behaviour of the solution is specified
at two different points, x1 and x2, and we require the solution, u(x), on the interval [x1, x2].
Choosing to call the dependent variable x instead of t hints at the fact that boundary value
problems frequently arise in modelling spatial behaviour rather than temporal behaviour.

• Eigenvalue Problems (EVPs)
Eigenvalue problems are boundary value problems involving a free parameter, λ. The objective
is to find the value(s) of λ, the eigenvalue(s), for which the problem has a solution and to
determine the corresponding eigenfunction(s), uλ(x).

We will focus exclusively on IVPs here but much of what we learn is relevant for BVPs and EVPs.
Systems of coupled ODEs arise very often. They can arise as a direct output of the modelling

or as a result of discretising the spatial part of a PDE. Many numerical approaches to solving PDEs
involve approximating the PDE by a (usually very large) system of ODEs. In practice, we only need
to deal with systems of ODEs of first order. This is because an ODE of order m can be rewritten as a
system of first order ODEs of dimension m. To do this for the mth order ODE Eq.(8.1), define a vector
u(t) in Rm whose components 1, u(i)(t), consist of the function u(t) and its first m− 1 derivatives:

u(t) =
�
u(0)(t), . . . u(m−1)(t)

�
=

�
u(t),

du

dt
(t), . . . ,

dm−1u

dtm−1
(t)

�
.

From this point on, we will not write the explicit t-dependence of u(t) and its components unless it is
necessary for clarity. We define another vector, F ∈ Rm, whose components will give the right hand
sides:

F(t,u) =
�
u(1), . . . , u(m−1), F (t,u)

�
.

By construction, Eq.(8.1) is equivalent to the first order system of ODEs
du

dt
= F (t,u) . (8.2)

1The clumsy superscript notation, u(i) for the components of u is adopted to accommodate the subsequent use of the notation ui to
denote the value of a function u(t) at a discrete time point, ti.
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The initial conditions given for Eq. (8.1) can be assembled together to provide an initial condition
u(0) = U. We can also do away with the distinction between autonomous and non-autonomous
equations be introducing an extra component, u(m), of u which satisfies the trivial ODE

du(m)

dt
= 1 with u(m)(0) = 0. (8.3)

For this reason, we will focus primarily on developing numerical algorithms for autonomous first order
systems of equations in dimension m

du

dt
= F (u) with u(0) = U. (8.4)

8.2 Timestepping and simple Euler methods

8.2.1 Timestepping and the Forward Euler Method

In the computer, we approximate u by its values at a finite number of points. The process of replacing
a function by an array of values at particular points is called discretisation. We replace u(t) with
t ∈ [t1, t2] by a list of values, {ui : i = 0 . . . N} where ui = u(ti), ti = t1 + ih and h = (t2 − t1)/N .
There is no reason why the discretisation should be on a set of uniformly spaced points but we will
initially consider this case. We have already seen in Sec. 3.2.1 how knowing the values of a function
at a stencil of discrete points allows us to approximate the derivative of the function. Furthermore we
knew the error in the approximation using Taylor’s Theorem. We can turn this reasoning around: if
we know ui and du

dt (ti) then we can approximate ui+1 (of course since u(t) is now a vector-valued
function we must use the multivariate version of Taylor’s theorem):

ui+1 = ui + h
du

dt
(ti) +O(h2). (8.5)

For the system of ODEs (8.4) this gives:

ui+1 = ui + hFi +O(h2), (8.6)

where we have adopted the obvious notation Fi = F(u(ti)). Starting from the initial condition for
Eq. (8.4) and knowledge of F(u) we obtain an approximate value for u a time h later. We can then
iterate the process to obtain an approximation to the values of u at all subsequent times, ti. While
this iteration might be possible to carry out analytically in some simple cases (for which we are likely
to be able to solve the original equation anyway), in general it is ideal for computer implementation.
This iteration process is called time-stepping. Eq. (8.6) provides the simplest possible time-stepping
method. It is called the Forward Euler Method.

8.2.2 Stepwise vs Global Error

In Eq. (8.6), we refer to O(h2) as the stepwise error. This is distinct from the global error, which
is the total error which occurs in the approximation of u(t2) if we integrate the equation from t1 to
t2 using a particular timestepping algorithm. If we divide the time domain into N intervals of length
h = (t2 − t1)/N then N = (t2 − t1)/h. If we make a stepwise error of O(hn) in our integration routine,
then the global error therefore O((t2 − t1)h

n−1). Hence the global error for the Forward Euler Method
os O(h). This is very poor accuracy. This is one reason why the Forward Euler Method is almost
never used in practice.

8.2.3 Backward Euler Method - implicit vs explicit timestepping

We could equally well have used the backward difference formula, Eq. (3.9), to derive a time-stepping
algorithm in which case we would have found

ui+1 = ui + hFi+1 +O(h2). (8.7)

Now, ui+1 (the quantity we are trying to find) enters on both sides of the equation. This means we
are not, in general in a position to write down an explicit formula for ui+1 in terms of ui as we did for
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the Forward Euler Method, Eq. (8.6). Rather we are required to solve a (generally nonlinear) system
of equations to find the value of u at the next timestep. For non-trivial F this may be quite hard since,
as we learned in Sec. 4.2, root finding in higher dimensions can be a difficult task.

The examples of the Forward and Backward Euler methods illustrates a very important distinction
between different timestepping algorithms: explicit vs implicit. Forward Euler is an explicit method.
Backward Euler is implicit. Although they both have the same degree of accuracy - a stepwise error of
O(h2) - the implicit version of the algorithm typically requires a lot more work per timestep. However
it has superior stability properties.

8.3 Predictor-Corrector methods

8.3.1 Implicit Trapezoidal method

We arrived at the simple Euler methods by approximating u by its Taylor series. A complementary
way to think about it is to begin from the formal solution of Eq. (8.4):

ui+1 = ui +

� ti+h

ti

F(u(τ)) dτ, (8.8)

and think of how to approximate the integral,

I =

� ti+h

ti

F(u(τ)) dτ. (8.9)

The simplest possibility is to use the rectangular approximations familiar from the definition of the
Riemann integral. We can use either a left or right Riemann approximation:

I ≈ hF(u(ti)) (8.10)

I ≈ hF(u(ti+1)). (8.11)

These approximations obviously give us back the Forward and Backward Euler Methods which we
have already seen. A better approximation would be to use the Trapezoidal Rule, Eq. (3.12) :

I ≈ 1

2
h [F(u(ti)) + F(u(ti+1))] .

Eq. (8.8) then gives the timestepping rule

ui+1 = ui +
h

2
(Fi + Fi+1). (8.12)

This is known as the Implicit Trapezoidal Method. The stepwise error in this approximation is O(h3).
To see this, we Taylor expand the terms sitting at later times in Eq. (8.12) and compare the resulting
expansion to the true Taylor expansion. It is worth writing this example out in some detail since it is
a standard way of deriving the stepwise error for any timestepping algorithm. For simplicity, let us
assume that we have a scalar equation,

du

dt
= F (u). (8.13)

The extension of the analysis to the vector case is straight-forward but indicially messy. The true
solution at time ti+1 up to order h3 is, from Taylor’s Theorem and the Chain Rule:

ui+1 = ui + h
du

dt
(ti) +

h2

2

d2u

dt2
(ti) +O(h3)

= ui + hFi +
1

2
h2Fi F

�
i +O(h3)

Note that we have used Eq. (8.13) and the chain rule to replace the second derivative of u wrt t at
time ti by Fi F

�
i . Make sure you understand how this works. Let us denote our approximate solution

by �u(t). From Eq. (8.12)

�ui+1 = ui +
h

2
[F (ui) + F (u(ti+1))]
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We can write

F (u(ti+1)) = F (u(ti)) + h
dF

dt
(u(ti)) +O(h2)

= Fi + hF �
iFi +O(h2).

Substituing this back gives

�ui+1 = ui + hFi +
1

2
h2Fi F

�
i +O(h3).

We now see that the difference between the true value of ui+1 and the approximate value given by
Eq. (8.12) is �ui+1 − ui+1 = O(h3). Hence the Implicit Trapezoidal Method has an O(h3) stepwise
error. Strictly speaking we have only shown that the stepwise error is at most O(h3). We have not
computed the O(h3) terms explicitly to show that they do not in general cancel as the O(h2) ones do.
Take it on faith that they do not (or do the calculation yourself in an idle moment).

8.3.2 Improved Euler method

The principal drawback of the Implicit Trapezoidal Method is that it is implicit and hence computa-
tionally expensive and tricky to code (but not for us now that we know how to find roots of nonlinear
equations!). Can we get higher order accuracy with an explicit scheme? A way to get around the
necessity of solving implicit equations is try to “guess” the value of ui+1 and hence estimate the value
of ui+1 to go into the RHS of Eq. (8.12). How do we “guess”? One way is to use a less accurate
explicit method to predict ui+1 and then use a higher order method such as Eq. (8.12) to correct this
prediction. Such an approach is called a Predictor–Corrector Method. Here is the simplest example:

• Step 1
Make a prediction, u∗

i+1 for the value of ui+1 using the Forward Euler Method:

u∗
i+1 = ui + hFi,

and calculate
F∗
i+1 = F(u∗

i+1).

• Step 2
Use the Trapezoidal Method to correct this guess:

ui+1 = ui +
h

2

�
Fi + F∗

i+1

�
. (8.14)

Eq. (8.14) is called the Improved Euler Method. It is explicit and has a stepwise error of O(h3).
This can be shown using an analysis similar to that done above for the Implicit Trapezoidal Method.
The price to be paid is that we now have to evaluate F twice per timestep. If F is a very complicated
function, this might be worth considering but typilcally the improved accuracy more than compensates
for the increased number of function evaluations.

There are two common approaches to making further improvements to the error:
1. Use more points to better approximate the integral, Eq. (8.9). This leads to class of algorithms

known as multistep methods. These have the disadvantage of needing to remember multiple
previous values (a problem at t = 0!) and will not be discussed here although you can read
about them here [1] or [2, Chap. 17].

2. Use predictors of the solution at several points in the interval [ti, ti+1] and combine them in
clever ways to cancel errors. This approach leads to a class of algorithms known as Runge-
Kutta methods.

8.4 Using adaptive timestepping to deal with multiple time scales and singularities
Up until now we have characterised timestepping algorithms as h → 0. In practice we need to
operate at a finite value of h. How do we choose it? Ideally we would like to choose the timestep
such that the error per timestep is less than some threshold, �. We measure the error by comparing
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Figure 8.1: Solutions of Eq. (8.15) for several different values of µ obtained using the forward Euler
Method with adaptive timestepping. Also shown is how the timestep varies relative to its global
minimum value as the solution evolves.

Figure 8.2: Comparison of the performance of the simple Euler method with adaptive and fixed
timestepping strategies applied to Eq. (8.15) for several different values of µ.
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the numerical solution at a grid point, �ui, to the exact solution, u(ti), assuming it is known. Two
criteria are commonly used:

Ea(h) = |�ui − ui| ≤ � Absolute error threshold,

Er(h) =
|�ui−ui|
|ui| ≤ � Relative error threshold.

Intuitively (and mathematically from Taylor’s Theorem) the error is largest when the solution is rapidly
varying. Often the solution does not vary rapidly at all times. By setting the timestep in this situation
so that the error threshold is satisfied during the intervals of rapid variation, we end up working
very inefficiently during the intervals of slower variation where a much larger timestep would have
easily satisfied the error threshold. Here is a two–dimensional example which you already know: a
relaxation oscillator when µ � 1:

dx

dt
= µ(y − (

1

3
x3 − x))

dy

dt
= − 1

µ
x. (8.15)

The solution of this system has two widely separated timescales - jumps which proceed on a time of
O( 1µ) (very fast when µ � 1) and crawls which proceed on a timescale of µ (very fast when µ � 1).
To integrate Eqs. (8.15) efficiently for a given error threshold, we need to take small steps during the
jumps and large ones during the crawls. This process is called adaptive timestepping.

The problem, of course, is that we don’t know the local error for a given timestep since we do not
know the exact solution. So how do we adjust the timstep if we do not know the error? A common
approach is to use trial steps: at time i we calculate one trial step starting from the current solution,
ui using the current value of h and obtain an estimate of the solution at the next time which we shall
call uB

i+1. We then calculate a second trial step starting from ui and taking two steps, each of length
h/2, to obtain a second estimate of the solution at the next time which we shall call uS

i+1. We can
then estimate the local error as

Δ =
��uB

i+1 − uS
i+1

�� .
We can monitor the value of Δ to ensure that it stays below the error threshold.

If we are using an nth order method, we know that Δ = chn for some c. The most efficient choice
of step is that for which Δ = � (remember � is our error threshold. Thus we would like to choose the
new timestep, h̃ such that ch̃n = �. But we know from the trial step that c = Δ/hn. From this we can
obtain the following rule to get the new timestep from the current step, the required error threshold
and the local error estimated from the trial steps:

h̃ =
� �

Δ

� 1
n
h. (8.16)

It is common to include a “safety factor”, σ1 < 1 to ensure that we stay a little below the error threshold:

h̃1 = σ1

� �

Δ

� 1
n
h. (8.17)

Equally, since the solutions of ODE’s are usually smooth, it is often sensible to ensure that the
timestep does not increase or decrease by more than a factor of σ2 (2 say) in a single step. To
do this we impose the second constraint:

h̃ = max

�
h̃1,

h

σ2

�

h̃ = min
�
h̃1,σ2h

�
.

The improvement in performance obtained by using adaptive timestepping to integrate Eq. (8.15) with
the simple forward Euler method is plotted as a function of the parameter µ in Fig. (8.2).
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Figure 8.3: Comparison between behaviour of the forward and backward Euler schemes with adaptive
timestepping applied to the problem in Eq. (8.19) for a range of values of �.

Another situation in which adaptive timestepping is essential is when the ODE which we are trying
to solve has a singularity. A singularity occurs at some time, t = t∗ if the solution of an ODE tends
to infinity as t → t∗. Naturally this will cause problems for any numerical integration routine. A
properly functioning adaptive stepping strategy should reduce the timestep to zero as a singularity is
approached. As a simple example, consider the equation,

du

dt
= λu2.

with initial data u(0) = u0. This equation is separable and has solution

u(t) =
u0

1− λu0 t
.

This clearly has a singularity at t∗ = (λu0)
−1.

8.5 Stiffness and implicit methods
Stiffness is an unpleasant property of certain problems which causes adaptive algorithms to select
very small timesteps even though the solution is not changing very quickly. There is no uniformly
accepted definition of stiffness. Whether a problem is stiff or not depends on the equation, the initial
condition, the numerical method being used and the interval of integration. The common feature of
stiff problems elucidated in a nice article by Moler [3], is that the required solution is slowly varying
but “nearby” solutions vary rapidly. The archetypal stiff problem is the decay equation,

du

dt
= −λu (8.18)

with λ >> 1. Efficient solution of stiff problems typically requires the use of implicit algorithms. Explicit
algorithms with proper adaptive stepping will work but usually take an unfeasibly long time. Here is a
more interesting nonlinear example taken from [3]:

dv

dt
= v2 − v3. (8.19)
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with initial data v(0) = �. Find the solution on the time interval [0, 2/�]. Its solution is shown in
Fig. 8.3(A). The problem becomes stiff as � is decreased. We see, for a given error tolerance (in this
case, a relative error threshold of 10−5), that if � � 1 the implicit backward Euler scheme can compute
the latter half of the solution (the stiff part) with enormously larger timesteps than the corresponding
explicit scheme. An illuminating animation and further discussion of stiffness with references is avail-
able on Scholarpedia [4].

8.6 Runge-Kutta methods
We finish our discussion of methods for integration of ODEs with a brief discussion of the Runge-Kutta
methods since these are the real workhorses of the business. When you call a black box integration
routine in MatLab or Mathematica to integrate an ODE, odds are it is using a Runge-Kutta method so
it is worth knowing a little about how they work. Runge-Kutta methods aim to retain the accuracy of
the multistep predictor corrector methods but without having to use more than the current value of u
to predict the next one - ie they are self-starting. The idea is roughly to make several predictions of
the value of the solution at several points in the interval [t1, ti+1] and then weight them cleverly so as
to cancel errors.

An nth order Runge–Kutta scheme for Eq. (8.4) looks as follows. We first calculate n estimated
values of F which are somewhat like the predictors used in Sec. 8.3:

f1 = F(ui)

f2 = F(ui + a2 1 h f1)

f3 = F(ui + a3 1 h f1 + a3 2 h, f2)

...
fn = F(ui + an 1 h f1 + . . .+ ann−1 h, fn−1)

We then calculate ui+1 as
ui+1 = ui + h (b1f1 + b2f2 + . . .+ bnfn). (8.20)

The art lies in choosing the ai j and bi such that Eq. (8.20) has a stepwise error of O(hn+1). The way
to do this is by comparing Taylor expansions as we did to determine the accuracy of the Improved
Euler Method in Sec. 8.3 and choosing the values of the constants such that the requisite error terms
vanish. It turns out that this choice is not unique so that there are actually parametric families of
Runge-Kutta methods of a given order.

We shall derive a second order method explicitly for a scalar equation, EQ. (8.13). Derivations of
higher order schemes provide nothing new conceptually but require a lot more algebra. Extension
to the vector case is again straightforward but requires care with indices. Let us denote our general
2-stage Runge-Kutta algorithm by

f1 = F (ui)

f2 = F (ui + a h f1)

ui+1 = ui + h (b1f1 + b2f2).

Taylor expand f2 up to second order in h:

f2 = F (ui) + a hFi
dF

du
(ui) +O(h2)

= Fi + a hFi F
�
i +O(h2)

Our approximate value of ui+1 is then

�ui+1 = ui + (b1 + b2)hFi + ab2h
2Fi F

�
i +O(h3).

If we compare this to the usual Taylor expansion of ui+1 we see that we can make the two expansions
identical up to O(h3) if we choose

b1 + b2 = 1

ab2 =
1

2
.
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Figure 8.4: Log-Log plot showing the behaviour of the global error as a function of step size for sev-
eral different timestepping algorithms applied to Eq. (8.23). The straight lines show the theoretically
expected error, hn, where n = 1 for the simple Euler method, n = 2 for the improved Euler method,
n = 3 for the Adams–Bashforth method and n = 4 for the 4th order Runge–Kutta method.

A popular choice is b1 = b2 =
1
2 and a = 1. This gives, what is often considered the “standard” second

order Runge-Kutta scheme:

f1 = F (ui)

f2 = F (ui + h f1) (8.21)

ui+1 = ui +
h

2
(f1 + f2).

Perhaps it looks familiar. The standard fourth order Runge–Kutta scheme, with a stepwise error
of O(h5), is really the workhorse of numerical integration since it has a very favourable balance of
accuracy, stability and efficiency properties. It is often the standard choice. We shall not derive it but
you would be well advised to use it in your day-to-day life. It takes the following form:

f1 = F(ui)

f2 = F(ui +
h

2
f1)

f3 = F(ui +
h

2
f2) (8.22)

f4 = F(ui + h f3)

ui+1 = ui +
h

6
(f1 + 2f2 + 2f3 + f4).

Fig. 8.4 compares the error in several of the integration routines discussed above when applied
to the test problem

d2v

dt2
+ 2 t

dv

dt
− v = 0, (8.23)
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with initial conditions v(0) = 0, dv
dt (0) = 2√

π
. With these initial conditions, Eq. (8.23) has a simple

exact solution:
v(t) = Erf(t), (8.24)

where Erf(x) is defined as

Erf(x) =
2√
π

� x

0
e−y2 dy. (8.25)

Notice that the superior accuracy of the RK4 method very quickly becomes limited by round-off error.
The smallest stepsize below which the error starts to get worse as the stepsize is decreased is quite
modest - about 10−3 in this example.
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