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Evolution

Lecture 1 Tuesday 6t 11-12
Introduction. Evidence for evolution. Fitness. Competition.

Lecture 2 Thursday 8t 2-3
Games & Genes.
Lecture 3 Thursday 8t 3-4
Computer-based practicals — example programs and questions.

Lecture 4 Tuesday 13t 11-12
Sex and Speciation. Sexual selection. Males as parasites. Why sexual
reproduction? How do new species arise.

Lecture 5 Thursday 15t 2-3

Disease evolution. Why aren’t we all wiped out by killer infections?
Lecture 6 Thursday 15t 3-4

Computer-based practicals — example programs and questions.



Games and Genes

Genes.

Obvious, we all known now that our behaviour/fitness is largely governed by our
genes. Here we’ll consider traits which are governed by two alleles at a single
locus.

Games.

Two-player games provide a robust and easy mathematical framework to deal
with the interaction (and competition) between individuals ‘playing’ different
strategies. We'll consider the mathematics and some classic examples.



Genes
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The classic example is eye colour. Blue and Brown eyes are (mostly) governed by a single

locus. The colour of someone’s eyes is determined by the 2 genes they inherit from their
parents.

In this example the Brown allele(Br) is dominant, and the Blue allele(bl) is recessive.

Father Br Br Mother bl bl

Children Br bl

This example is easy — all children are Br bl and have brown eyes.

This shows the difference between genotype and phenotype.

(Please don’t ask about green eyes !!)



Genes

Father Br bl Mother bl bl
Children Br bl Children Br bl Children bl bl Children bl bl

In this combination of Brown-eyed Father and Blue-eyed Mother there is a 50:50 ratio in
the children.



Genes

Father Br Br Mother Br bl
Children Br Br Children Br Br Children Br bl Children Br bl

This clearly illustrates the dominance of the Brown eye allele.



Genes

FmaIIy the sllghtly odd one:

Father Br bl Mother Br bl
Children Br Br Children Br bl Children Br bl Children bl bl

So due to the fact that a Brown-eyed parent can be “hiding” a blue gene, it is possible for
two Brown-eyed parents to have a Blue-eyed child.

Notice that there are always four ways of putting together the parents’ genes — even if often
these lead to the same combination.



Genes

In general, we can use these caricatures to define population-level distributions.

If we assume that mating is random...
— that is blue-eyed individuals don’t preferentially partner other blue-eyed people

...then the Hardy-Weinberg Ratio says that

If X is the proportion of allele A; in the population then the
proportion of the population who are type A; A; is simply X; X..

So if the proportion of blue-eye alleles in the population is b (and say b=0.2) then:

BrBr=(1-b)2=0.64  Brbl=blBr=b(1-b) =0.16 bl bl = b2 = 0.04

So only 4% of the population would have blue eyes.



Genes

Usually we don’t think of eye-colour as giving a substantial evolutionary advantage
(although clearly there is some dependence on latitude). Let’s consider three different
examples and their mathematical models:

Haemophilia. Recessive genetic disorder — individuals of type hh have problems producing

blood clotting agents. (Note this gene is on the X chromosome, so affects males differently
to females — but we’ll ignore this complication).

Fatal Mutation. What if there was a mutation that was dominant and gave a lower fitness?

Sickle-cell disease. Again this is recessive; type aa suffer from extreme anaemia, type Aa
and AA do not — but type Aa has some level of protection against malaria.



Genes

Consider alleles of type A and a. The dynamics are described by:

da_ | Fitness of a-type offspring |- a x| Fitness of average offspring |

dt
= [Waaa2 +3W ad-a)+iW, (1- a)a] —ax [Waaa2 +2W a(l-a)+W,, (1- a)z]

=W a’(1-a)+W, a(l-a)(1-2a)-W,,a(l-a)’
=a(l- a)[Waaa +W, d-2a)-W,, (- a)]

Where the W terms are the reproductive fitnesses of each allele combination.

This allows us to experiment with different real-world examples.



Two-Player Games

A two-player game can be defined by a pay-off matrix; this gives the payoff an individual
playing strategy s gains when playing against strategy s’.

Pay-off to
strategy

We then want to suppose that each strategy reproduces based on its pay-off matrix:

ds
—L=55A+ss,B
dt

ds

—2 =5,5C+s,5,D
dt

ds d( S,

dt=dt )=S(l—S)[SA+(1—S)B—SC—(1—S)D]

S +5,



Two-Player Games

More generally, we would like to set P; as the proportion of individuals playing strategy i,
and set W to be the pay-off matrix.

In this case, the generalised model is:

dp, )
—L=[WP]P |P"WP|P,

If we then define the average fitness (per individual) within this populations to be:

w=P WP

then we find that if W is symmetric, then fitness always increases over time.




Two-Player Games: mixed strategies

Suppose now instead of playing pure strategies s, and s,, the two players decide to
randomly play a mixed strategy (ie playing s, a proportion p of the time). Setting P=(p 1-p)T
and Q=(g 1-q)7, we have:

Pay-off to D PTWP PTWQ
strategy
Q'wp PTWQ

The most famous example of this type of 2-player game is the hawk-dove model:
D H
W =

1 0 D
A(>1) -B(<0) H

Where doves are peaceful and share a resource, whereas hawks are competitive and
fight for a resource.



Two-Player Games: ESS

An Evolutionary Stable Strategy (or ESS) is a strategy (pure or mixed) that cannot be
invaded. Mathematically this means that P is an ESS if:

O'WP<=P'WP V(O

That is, there is no other strategy (Q) that can invade a population of P’s.

Note:
1) An ESS does not optimise fitness, it is simply more fit than others in its own

environment.
2) Multiple ESS can easily exist.
3) Often we can consider a local ESS, which is sufficient if mutation is short-range.

An ESS is strongly or continuously stable if it is also an evolutionary attractor:
PTWQ — QTWQ YO

That is, it can out-compete all other strategies.



Two-Player Games: Bishop-Canning theorem

If P is an ESS composed of pure strategies s,, s,, ... S; then in an environment of all P the
payoff to all pure strategies is equal to that of the ESS.

s; WP=P'WP Vi

The proof of this comes from realising that P is a linear combination of the pure strategies;
so if the equality does not hold, then some strategy will perform better than P, so it cannot
be an ESS.



Invasion Plots

These provide an ideal means of rapidly visualising the evolutionary behaviour.

Resident strategy wins, invader has
negative growth rate.

Invading strategy successful, invader has
positive growth rate.

Invading Strategy

Resident Strategy

This form of invasion plot (or Pairwise invasibility plot) is associated with a strongly stable
ESS. At the cross-over point, nothing else can invade (so its an ESS); also the strategy is able

to invade any other strategy.



