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Abstract. In many domains of data science, it is desired to detect modes of oscillation
of a system, including estimating their frequency, damping rate, mode shape and
amplitude. Here a Gaussian process solution is presented.

In memory of Professor Sir David John Cameron MacKay FRS (22 April 1967 – 14
April 2016)

1. Introduction

A dynamical system with an asymptotically stable equilibrium subject to random
forcing exhibits oscillatory response if it has underdamped modes of oscillation. It may
be desired to identify the mode frequencies, damping rates and shapes.

The example that motivated this paper is to detect inter-area oscillations in electricity
transmission networks from phasor measurement unit data [TR+]. Figure 1 shows an
example where the oscillations became obvious, but the aim is to detect the least damped
modes before they become obvious, so that appropriate control can be put in place.

 
Fig. 7.  Amplitude as a function of oscillation frequency and time. Voltage 
angle difference between North and Central England analyzed. 

 
a) Overview 

 
b) Expanded view showing the beginning of the oscillation 

 Fig. 8.  Voltage angle differences with the CE2 measurement as a reference. 

The 0.85Hz mode shape is shown for the measurement-based 
analysis and for the detailed PowerFactory model in Fig. 10 a) 
and b), respectively. Upon first inspection the measurement-
based and simulation-based mode shapes are somewhat 
different. However, more careful analysis reveals that the 
South East part of the system (SE and CE3, see Fig. 2) 
oscillates nearly in the same phase according to both the 
simulation and measurement. According to the simulation, the 
oscillations at other areas are nearly in opposite phase to the 
oscillations at South East part of the system. According to the 
measurement, as a whole, the oscillations at other parts of the 
system are also in opposite phase to the oscillations at South 
East part of the system. However, the spread in the oscillation 
angles at other areas is much larger in the measurement-based 
mode shape than in the simulation-based mode shape. As well 
as with the 0.5Hz mode shape, the oscillation amplitudes of the 

0.85Hz mode differ somewhat between the simulation and 
measurement. However, the amplitudes are affected by various 
factors in the power system, and therefore it is rather unrealistic 
to assume close consistence in the amplitudes. Especially in 
case of well-damped oscillation modes, amplitudes are small, 
leading to a poor signal-to-noise ratio and difficulties in a 
reliable analysis of measured PMU signals. 

5 Discussion 
Some differences were noted between the results of simulation-
based and measurement-based approaches of identifying the 
inter-area mode characteristics. There are several reasons for 
these differences. In the simulations, even in the case of the 
detailed model, uncertainties cannot be avoided due to the lack 
of data regarding the distribution level, including load models 
and embedded generation. Also on transmission level, the 
modeled operating points of power plants do not exactly match 
reality. This leads to slight differences in the power flow 
situation when comparing measurement and simulation results. 
In the measurement-based analysis, uncertainty of the results 
is caused to a large extent by the very small amplitude of 
oscillations during ambient conditions. When the amplitude is 
small, the oscillations are more likely to be affected by the 
underlying noise and other random excursions, leading to less 
accurate results.  

6 Conclusions and future work 
This paper presents and compares the measurement and 
simulation derived mode shapes and frequencies of the GB 
power system. The measurement-based identification of the 
modal characteristics is carried out under ambient conditions 
of the power system and the results can therefore be used to 
validate small-signal analysis results derived from dynamic 
simulation studies. 

There are always differences between the dynamic behavior of 
the real and the simulated power system. Normally, the 
simulation model is validated by comparing the transient 
behavior of the simulated and measured results. However, the 
opportunity of capturing significant system transients or 
conducting transient tests on the system is small. This paper 
focused especially on the frequency components and mode 
shapes estimated from the ambient measurements and from the 
detailed simulation model. The results indicate that more 
consistent mode characteristics between the simulation and 
measurement are achieved when the dominant mode is studied. 
For the other studied modes, there is less correlation between 
them mainly because of poor signal-to-noise ratio in the 
measurement of very small oscillation signals. 

An important future work area is to study how the 
measurement data can be used in tuning the dynamic grid 
model of the power system. A robust method with well-defined 
quality criteria for evaluating dynamic models by PMU 
measurements could be developed in addition to the subjective 
method of visual comparison of mode shapes.  
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Figure 1. Voltage angles as functions of time for various locations in
the GB network, relative to location CE2 (reproduced with permission
from [TR+]).

Another example of motivation is to detect soft modes for civil engineering structures
such as buildings and bridges, e.g. Ch.13 of [HF]. Yet others are the identification of
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modes of oscillation in the sun (helioseismology) [Ko], in gene expression data [PMPR],
and the business cycle (e.g. Ch.4 of [Rom]). Finally, I will suggest a potential new
approach to using NMR for protein structure determination and imaging, by stochastic
stimulation instead of pulses.

A standard approach to detecting oscillations is to identify peaks in the Fourier spec-
trum [HF]. For example, the response x of the second order system

(1) mẍ+ βẋ+ kx = η

to noise η with power spectrum P has power spectrum

|x̂(Ω)|2 =
P (Ω)

(k −mΩ2)2 + β2Ω2

as a function of frequency Ω. So if the noise is white (P is constant), then the inverse

quality factor Q−1 = β√
mk

is precisely the fullwidth at half maximum for the power

spectrum Ω2|x̂(Ω)|2 of the velocity ẋ (its maximum is at Ωres =
√
k/m, known as the

resonant frequency), and the damping ratio ζ = 1
2Q
−1 is the halfwidth at half maximum.

For P slowly varying on the scale of β√
mk

, the results remain good approximations. This

was given a sound grounding in Bayesian analysis (see [Gre] for a survey and [B] for a
pedagogical presentation), but still suffers from issues like dealing with trends, choosing
windowing functions, missing data, failure to cater for slowly shifting phase, and poor
theoretical justification for taking more than the largest peak if one wants to infer more
than one mode of oscillation.

Wavelet transforms are popular for resolving signals in both time and frequency (up
to the limits of the uncertainty principle), but I am not aware whether they can give an
estimate of damping rate.

Another approach is to study the effect of an impulse (the Prony method and vari-
ants like MUSIC and ESPRIT, e.g. [PLH]), but many real-world systems may not be
subjectable to impulses. For a review of these and some other methods (e.g. Hilbert
transform), see [ZD].1

Here I present a Gaussian process method for detection of oscillations, following a
suggestion of my brother David. For an introduction to Gaussian processes for time-
series modelling, see [RO+]. My method allows for slowly varying equilibrium with
arbitrary number of underdamped modes, and uses decaying sinusoid kernels rather
than the periodic kernels of [M, D+]. It allows some overdamped modes too, because
they may form the dominant part of the response, with the oscillations being a decoration
on top.

After starting this work, I found the idea had just been proposed independently
[PMPR]. I develop it in greater generality, however, and address particularities relevant
to the case of the electricity transmission system. Another reference which expresses sim-
ilar ideas is [RR+] and it has precursors under the terms “linear time invariant systems”
and “latent force models”, especially [HS].

1As yet another method, I learnt back in the mid-1980s that a good way to determine the eigenvalues
of an asymptotically stable system from the response to an impulse is to Laplace transform the response
numerically and then fit a Padé approximation and read off its poles.
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2. Gaussian processes

I begin with a rapid review of Gaussian processes (GP).
A Gaussian process is a probability distribution for functions F : T → R from a set T

such that for all n ≥ 1 the marginal density P for the values f1, . . . fn = F (t1), . . . F (tn)
at any finite set t1, . . . tn ∈ T is Gaussian.

Examples for the set T are R representing time, or the set V of vertices in a graph
representing spatial locations in a network, or R×V for time and vertices, or R×V × I
where I is a set of labels representing components of a vector of values at each vertex
and time. We shall end up using T = R × ((V × {1, 2}) ∪ E) where {1, 2} label the
frequency and power imbalance at each vertex in a graph and E is the set of edges in a
spanning tree.

A basic theorem is that it follows that there is a “mean” function M : T → R and a
positive definite “covariance” function C : T × T → R such that

P (f1, . . . fn) = (2π)−n/2(det c)−1/2e−
1
2

(f−m)T c−1(f−m),

where m is the vector with components mi = M(ti) and c is the matrix with components
cij = C(ti, tj). C positive definite means that for all t1, . . . tn, and v1, . . . vn not all zero,
then vT cv > 0.

There are many introductions to Gaussian processes, e.g. [M, RW, RR, RO+, L+],
and software packages, e.g. GPML.

An amusing example of a covariance function for a Gaussian process is given in Ap-
pendix B.

3. Linear stochastic systems

Suppose we are faced with an asymptotically stable linear forced system

(2) ẋ = A(t)x+ η(t),

with x, η ∈ Rn, ẋ = dx
dt , and A possibly time-dependent. In reality the system may

be nonlinear but if it has an asymptotically stable equilibrium (or more generally, an
asymptotically stable slowly varying solution) and the forcing is small then it is appro-
priate to linearise the system about that solution. Then the response x(t) to forcing η(t)
can be written as

x(t) =

∫ t

−∞
H(t, t′)η(t′) dt′,

with H the impulse response (matrix-valued Green function), i.e. the matrix solution of

∂H

∂t
= A(t)H(t, t′)

for t > t′ with H(t′+, t′) = I. For future use, note that for any t < t′ < t′′,

(3) H(t, t′′) = H(t, t′)H(t′, t′′).

If η is a Gaussian random process on R × {1, . . . n} with zero mean and covariance
function2

Kij(s, t) = 〈ηi(s)ηj(t)〉

2Dependence on component label is indicated by subscripts.
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then x is Gaussian with zero mean and covariance function

Lij(s, t) = 〈xi(s)xj(t)〉 =

∫ s

−∞
ds′
∫ t

−∞
dt′Hik(s, s

′)Kkl(s
′, t′)Hjl(t, t

′),

using the summation convention.
If the system is autonomous (some say time-invariant) then H(s, s′) is a matrix-

function h(σ) of just one variable σ = s − s′. If the forcing is stationary (which means
its statistics are time-invariant) then K(s, t) is a matrix-function k(τ) of τ = t− s with
k(−τ) = k(τ)T . So, assuming both and changing variables to σ and τ ′ = t′ − s′,

(4) Lij(s, t) = lij(τ) =

∫ ∞
0

dσ

∫ τ+σ

−∞
dτ ′hik(σ)kkl(τ

′)hjl(τ + σ − τ ′).

This is an example of how one Gaussian process (η) produces another (x) by convolution
[RW] (also known as “blurring”, e.g. [M]).

In particular, if the forcing is white, i.e.

k(τ) = Kδ(τ)

for some symmetric positive semi-definite3 (psd) matrix K (reusing the notation), then
for τ > 0,

(5) lij(τ) =

∫ ∞
0

dσhik(σ)Kklhjl(τ + σ),

and for τ < 0, l(−τ) = l(τ)T . Using h(τ +σ) = h(σ)h(τ) for σ, τ > 0 from (3), this boils
down to

(6) l(τ) =

(∫ ∞
0

dσh(σ)KhT (σ)

)
hT (τ)

for τ > 0, giving the standard result that the covariance of the response of a linear
system to white noise is a matrix multiple of the transpose of the impulse response
function (e.g. p.105 of [Ga]).

Note that (6) can be written as

(7) l(τ) = ΣhT (τ),

where the symmetric matrix

(8) Σ =

∫ ∞
0

h(σ)KhT (σ) dσ

satisfies the Sylvester equation [Ga]

AΣ + ΣAT = −K.

The latter has a unique solution for Σ because A has been assumed to have all its
spectrum in the open left half plane, so there are no pairs of eigenvalues for A and AT

summing to zero (see the theory of Sylvester equations [BR]).

3K positive semi-definite means uTKu ≥ 0 for all vectors u.
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The idea that filtering white noise produces interesting processes is old, e.g. [Ga, BF,
TBT].4 The resulting Gaussian processes are sometimes called (asymptotically stable)
linear time-invariant (LTI) processes.

Fourier transform analysis requires the autonomous and stationary assumptions and
often implicitly assumes white noise. We shall use these assumptions too initially, but
later on we shall relax to slowly varying system parameters and noise-covariance, and
other noise sources.

Note that one can treat noise sources that are themselves (linearly) filtered white noise
via hidden variables, representing the state of the filter. So for now, restrict attention
to the white noise case.

The one-dimensional case

ẋ = −ax+ η,

with 〈η(s)η(t)〉 = Kδ(t−s) and a,K > 0, generates the (stationary) Ornstein-Uhlenbeck
(OU) process. The impulse response (i.e. solution when η(t) is replaced by δ(t)) is
x(t) = e−at, so applying (6) the covariance function is exponential:

l(τ) =
K

2a
e−a|τ |.

A sample is shown in Figure 2. With probability one, samples are continuous but
nowhere differentiable [Ad].

0 0.5 1 1.5 2 2.5 3 3.5 4
-3

-2

-1

0

1

2

3

Figure 2. A sample from the OU process with a = 1, K = 2.

The second order case (1) with m,β, k > 0 and mk > β2/4, generates the under-

damped linear Langevin (ULL) process. Setting α = β
2m and ω = 1

m

√
mk − β2/4, the

free solutions of (1) are x(t) = e−αt(A cosωt + B sinωt) for arbitrary constants A and
B. Writing (1) as a system

ẋ = v + ζ(9)

v̇ = − β
m
v − k

m
x+

η

m
,

4Also I took a computer music course in Princeton in 1978/9 in which we made human song by
filtering white noise.
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where an artificial noise source ζ has been introduced to facilitate evaluation of the im-
pulse response matrix (see Appendix A), and applying (6), yields the covariance function
for x as

l(τ) =
K

2βk
e−α|τ |(cosωτ +

α

ω
sinω|τ |).

Samples are shown in Figure 3 for two values of α/ω. Note that the samples are dif-
ferentiable, as can be proved by applying results from [Ad]. Intuitively, it is because
the noise forces the second derivative of the observable, or equivalently l′(0) = 0. If one
wishes to identify the resonant frequency Ωres and the damping ratio ζ from ω and α
then use Ω2

res = k
m = ω2 + α2 and ζ = α

Ωres
.

0 2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

3

4
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-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3. Samples from the ULL process for K
2βk = 1 with (a) α =

e−1, ω = e, (b) α = e, ω = e−1.

It is also of interest to look at the process for the velocity ẋ of the ULL, which I call
the “velocity of ULL” process (VULL). Its covariance function (Appendix A) is

l(τ) =
K

2mβ
e−α|τ |(cosωτ − α

ω
sinω|τ |).

Samples are shown in Figure 4 for two values of α/ω. The samples are continuous but
nowhere differentiable (apply [Ad]).

One can also consider the full 2D system, for which the covariance function is a 2× 2
matrix function (32) of time difference, as derived in Appendix A.

The ULL and VULL are extreme cases of one-dimensional observation y(t) = ax(t) +
bẋ(t) (for constants a and b) of the underdamped 2D system, which has covariance

function proportional to e−α|τ |(cosωτ + A sinω|τ |) for some A ∈ [−α/ω,+α/ω] [XXX
perhaps give it explicitly?].

An alternative way to see this, that will be useful for higher dimensions, is that a
general underdamped 2D system can be written in the real Jordan normal form

(10) ẋ = B

[
−α −ω
ω −α

]
CTx+ η

for two-dimensional vectors x, η, invertible 2×2 matrix B, CT = B−1 (the transpose is an
electrical engineering convention) and 〈ηi(s)ηj(t)〉 = Kijδ(t− s) for some psd symmetric
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Figure 4. Samples from the VULL process for K
2mβ = 1 with (a) α =

e−1, ω = e, (b) α = e, ω = e−1 (e is the base of natural logarithms).

matrix K. Writing y = CTx then

(11) ẏ =

[
−α −ω
ω −α

]
y + η̃

with η̃ = CT η, which has covariance matrix K̃ = CTKC. The impulse response is
y(t) = e−αtRωt, where

(12) Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

So the covariance matrix function for y for τ ≥ 0 is

l(τ) =

(∫ ∞
0

e−ασRωσK̃e
−ασRTωσ dσ

)
e−ατRTωτ .

Write Rθ = cos θI + sin θJ with

I =

[
1 0
0 1

]
,(13)

J =

[
0 −1
1 0

]
.(14)

Then for τ ≥ 0,

(15) l(τ) =
1

4α(α2 + ω2)
e−ατ (R cosωτ + S sinωτ),

with matrices [XXX check signs]

R = (2α2 + ω2)K̃ + αω(JK̃ − K̃J)− ω2JK̃J(16)

S = −αω(K̃ + JK̃J)− ω2JK̃ − (2α2 + ω2)K̃J.(17)

The covariance matrix function for x is Bl(τ)BT so has a similar expression.
The covariance function for one component, say y1, is

l11(τ) =
1

4α(α2 + ω2)
e−ατ (R11 cosωτ + S11 sinωτ)



8 R.S.MACKAY

with

R11 = (2α2 + ω2)K̃11 − 2αωK̃12 − 2ω2K̃22

S11 = αω(K̃22 − K̃11)− 2α2K̃12.

It follows that for α, ω fixed, the ratio S11/R11 goes monotonically from −α/ω to +α/ω
as

(ωK̃12 − αK̃11)2 + (K̃11K̃22 − K̃2
12)ω2

K̃2
11

goes from 0 to infinity. Note that K psd implies that this expression is never negative.
The case −α/ω is the VULL and the case +α/ω is the ULL. For rotationally invariant

K̃ (i.e. a multiple of the identity) then S11 = 0 and the resulting covariance function
was called OUosc by [PMPR] and “exponentially damped cosine” by [Ab]. Note that
S11/R11 > α/ω does not give a valid covariance function because a covariance function
always satisfies l11(τ) ≤ l11(0) for all τ . Similarly, S11/R11 < −α/ω is not valid because
a covariance function always satisfies

∫
l11(τ) dτ ≥ 0. Thus if one is observing only one

component, to keep these constraints it is a good idea to write S11 = α
ωR11 tanh r and

use r ∈ R ∪ {±∞} as parameter instead of S11. I call the GP with covariance function

l(τ) = σ2e−α|τ |(cosωτ +
α

ω
tanh r sinω|τ |)

the generalised ULL (GULL). The same form of covariance function is obtained for any
component, a1y1 + a2y2 (or equivalent for x), but with σ2 and r depending on (a1, a2).

Now proceed to the case of arbitrary dimension N . Suppose that the eigenvalues
of A are distinct. Then A can be diagonalised by change of coordinates. If there are
complex eigenvalues one needs complex coordinates, but the alternative used here is to
block-diagonalise with a 2× 2 block for each complex-conjugate pair of eigenvalues and
restrict to real coordinate changes (as above). Thus

A = BΛCT

with Λ block-diagonal, having a 1× 1 block −λm for each real eigenvalue (the notation
has a minus sign because asymptotic stability requires them to be negative) and a 2× 2

block

[
−αm −ωm
ωm −αm

]
with αm, ωm > 0 for each complex conjugate pair −αm ± iωm,

and CT = B−1. The columns of B (taken in pairs for complex eigenvalues) are the mode
shapes.

Then the impulse response can be written

h(σ) = BM(σ)CT ,

with M block-diagonal, having 1× 1 blocks e−λmσ and 2× 2 blocks e−αmσRωmσ.
It follows that the covariance of the response is (for τ > 0)

(18) lij(τ) =
∑
m,n

Bim

∫ ∞
0

Mm(σ)DmnM
T
n (σ) dσ MT

n (τ)Bjn,

where Mm denotes the diagonal blocks of M , Dmn = CkmKklCln (with summation
convention), and the sum over modes m,n has been made explicit. For a complex mode
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m, Bim is a pair of columns, as already mentioned. The elements Dmn are 1× 1, 1× 2,
2× 1 and 2× 2 blocks according as m,n are real or complex modes. We write

Pmn =

∫ ∞
0

Mm(σ)DmnM
T
n (σ) dσ,

so

(19) lij(τ) =
∑
m,n

BimPmnM
T
n (τ)Bjn.

It remains to evaluate the integrals Pmn. In the 1× 1 case,∫ ∞
0

e−λmσDmne
−λnσ dσ =

Dmn

λm + λn
.

In the 1× 2 case,∫ ∞
0

e−λmσDmne
−αnσRTωnσ dσ =

1

(λm + αn)2 + ω2
n

Dmn

[
λm + αn ωn
−ωn λm + αn

]
.

In the 2× 1 case,∫ ∞
0

e−αmσRωmσDmne
−λnσdσ =

1

(αm + λn)2 + ω2
m

[
αm + λn −ωm
ωm αm + λn

]
Dmn.

In the 2 × 2 case, write Dmn =

[
N +Q E + F
E − F N −Q

]
. Then the integral boils down to

[XXX CHECK SIGNS!]

P = N
(αm+αn)2+(ωm+ωn)2

[
αm + αn −ωm − ωn
ωm + ωn αm + αn

]
+ Q

(αm+αn)2+(ωm−ωn)2

[
αm + αn ωn − ωm
ωm − ωn αm + αn

]
+ E

(αm+αn)2+(ωm−ωn)2

[
ωn − ωn αm + αn
αm + αn ωm − ωn

]
+ F

(αm+αn)2+(ωm+ωn)2

[
ωm + ωn αm + αn
−αm − αn ωm + ωn

]
.

Note that in the case m = n then Dmn is symmetric psd so F = 0, N ≥
√
Q2 + E2 and

P =
N

2(α2 + ω2)

[
α −ω
ω α

]
+

1

2α

[
Q E
E Q

]
.

This reproduces the result (15) for the 2D case studied earlier.
In practice, to fit data to a GP with covariance function (19) it is not sensible to seek

to fit all modes. Thus a smaller number K < N of modes can be targeted (count each
complex mode as 2) by making B an N ×K matrix and P a K ×K matrix.

Also, the parameters of a system and the noise source may change slowly over time. If
one wants to model data over a long time then one should allow these parameters to be
themselves a random process [XXX but is the result Gaussian?? superstatistics?]. For
many purposes, however, it is enough to analyse a time interval long enough to capture
the oscillations and short enough that the underlying parameters do not change much.
More important is to design the analysis to work on streaming data rather than batch
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[XXX [RR] could be useful here, and [RR+] and its references e.g. [HS]? probably need
to make a separate section on this!].

4. Application to AC electricity networks

The dynamics of an AC (alternating current) electricity network can be modelled
approximately by a connected graph with a node for each rotating machine (synchro-
nous generator or motor) [MBB] (this leaves open the question of how to model DC/AC
convertors, such as at wind farms, solar photovoltaic farms and DC interconnected ter-
minals). Let N be the number of nodes. As described in [Rog] (another useful reference
is [An]), one can model an AC network at various levels of complexity. If one ignores
aspects like the dynamics of the voltages5, 3-phase imbalances, reactive power control
and harmonics, the state can be specified by a phase φl and frequency fl = φ̇l (as φl
is in radians it might be better to denote fl by ωl, but I am already using ω for mode
frequencies) at each node l, and dynamics for the vector f of frequencies and phases φ
given by balancing power (cf. (1) of [SMH] or (17) of [SM]):

Ilflḟl = pl − Γlf
2
l −

∑
l′

VlVl′ (Bll′ sin(φl − φl′) +Gll′ cos(φl − φl′))(20)

φ̇l = fl

where Il is an inertia, Γl a damping constant, Vl is the amplitude of the voltage at l,
Bll′ is a symmetric matrix of ideal admittances of the line between l and l′ (Bll = 0),
Gll′ is a symmetric psd matrix of conductances of the line between l and l′ (which
produces transmission losses), including self-conductances, and p is a vector of power
imbalances (generation minus consumption), which is to be regarded as an external
stochastic process (e.g. people switching loads on and off, wind farms producing varying
power). For the moment, think of p as fixed.

The system has the special feature of global phase rotation invariance: if one adds
the same constant to all the phases then the dynamics produces the same trajectory but
with the constant added. One can quotient by this symmetry group, which we denote
by S.6 For example, choose a root node o and a spanning tree in the graph, orient its
edges e away from o (other choices are alright but this is to make a definite choice), and
let ∆e = φl′ −φl for each edge e = ll′ in the spanning tree (there are N − 1 of these, and
we denote the vector of phase differences by ∆. Then the phase difference between any
two nodes can be expressed as a signed sum of the ∆e, and the equations φ̇l = fl can be
replaced by ∆̇e = fl′ − fl.

The quotient system has a manifold of equilibria in the space of all power imbalance
vectors p, frequency vectors f and phase difference vectors ∆. For an equilibrium (mod
S), each node has the same frequency and the phase differences are constant. The
manifold of equilibria is a graph over the common frequency F ∈ R and the phase

5this is relatively easy to incorporate, e.g. [TBP], but a full treatment would require including voltage
control, power system stabilisers, and excitor control

6In reality, the system operator is required to keep the phases within some interval (of about 100
cycles) around that for a reference rotor at the nominal frequency, so they exert changes to p to achieve
this, thereby breaking the phase rotation invariance, but we will ignore that.
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differences ∆ ∈ (R/2πZ)N−1:

pl = ΓlF
2 +

∑
l′

VlVl′ (Bll′ sin(φl − φl′) +Gll′ cos(φl − φl′)) .

Let us restrict attention to the part with F near a nominal reference frequency F0 (50Hz
in Europe, which means F0 = 100π in radians/sec). Then the projection to the space of
power imbalances p covers 2N−1 times a region around p = 0 [XXX this is not always
true]. Of these 2N−1 equilibria, precisely one is stable, roughly speaking the one with all
phase differences between linked nodes being less than π/2 in absolute value. This can be
established by the energy method used in [TBP], modified to include the conductance
matrix G and ignore the voltage dynamics [XXX DO IT]. It should noted, however,
that inclusion of governors or power system stabilisers in the model can destabilise the
equilibrium and produce inter-area oscillations [Rog], presumably by a Hopf bifurcation.
The method of the present paper is not well adapted to detecting autonomous oscillations
as opposed to damped ones forced by noise.

Suppose the system is near the stable equilibrium for some p. As p moves in time,
the response roughly speaking follows it on the manifold of equilibria, but deviations
from equilibrium are in general excited and these would relax back to equilibrium if
p were to stop moving. For small movements of p about a mean imbalance vector P
with corresponding stable equilibrium (F,∆), it is appropriate to linearise the system.
A reference for small-signal stability in power systems is [GPV]. Write δfl, δ∆e, δpl for
the deviations of fl, ∆e and pl from the equilibrium. Write

Ml = IlF, γl = 2ΓlF,

Tll′ = VlVl′(Bll′ cos(Φl − Φl′)−Gll′ sin(Φl − Φl′)).

Then

Ml
˙δf l = δpl − γlδfl −

∑
l′

Tll′(δφl − δφl′)(21)

˙δ∆e = δfl′ − δfl
for e = ll′. Write this as

(22) ẋ = Ax+ Cδp

with x =

[
δf
δ∆

]
and C =

[
diagM−1

l
0

]
.

Let us model the dynamics of the power imbalances by

(23) δ̇p = −Jδp+ σξ

for some matrix J (with −J asymptotically stable) and (multidimensional) white noise
σξ with covariance matrix K = σσT (later, J , P , T and K may vary slowly in time).
This is a somewhat crude representation, but captures the idea that p has random
increments and reversion to a mean. There is evidence that load distribution is close
to Gaussian, e.g. fig.14 of [TT+], which is consistent with this model, though that data
says nothing about the temporal correlations. One might argue that National Grid’s
balancing actions are based more on the average frequency and phase differences than
the power imbalances, but on the manifold of equilibria these are equivalent.
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The resulting system (22, 23) for (x, δp) is of the form (2), but it has a skew-product

structure that we should exploit, namely δ̇p does not depend on x (also the x-dynamics
has structure in that it is only the frequencies that see δp directly). In reality, perhaps

δ̇p does depend a little on x, e.g. National Grid balancing operations and frequency-
sensitive generators and loads, but let us continue with this model. One way to exploit
the skew-product structure is to derive the covariance function for δp using (6) and
then insert this into the formula (4) for the covariance function of x, but it leads to
an integration whose treatment is not simple. Alternatively, we can apply (6) to the
joint system (22, 23), exploit the skew-product form of the impulse response, and take
the xx-block of the covariance function. I choose the latter approach, subject to the
simplifying but generic assumption of simple eigenvalues for the full system.

The impulse response of (23) can be written in matrix exponential notation as δp(t) =
e−Jt. Similarly, the impulse response of (22) can be written as x(t) = eAt. To compute
the response of x to an impulse on ṗ, it is convenient to assume that A and −J have no
eigenvalues in common, as is generically the case. Then there exists a unique solution
E to another Sylvester equation

(24) AE + EJ = C,

and defining y = x + Ep we see that ẏ = Ay + Eξ. So the response of y to an impulse
on ṗ is eAtE. It follows that the response of x = y − Ep to an impulse on ṗ is

x(t) = hxp(t) := eAtE − Ee−Jt.
Note that using (24), the time-derivative of hxp at t = 0 is just C (this is one place where
the matrix exponential notation helps). Thus the impulse response of the full system
has the block form

(25) h(t) =

[
e−Jt 0

eAtE − Ee−Jt eAt

]
Then the stationary covariance matrix Σ (8) of the joint process has the block form

(26) Σ =

∫ ∞
0

h(σ)

[
K 0
0 0

]
hT (σ) dσ =

∫ ∞
0

[
e−JσKe−J

T σ e−JσKhTxp(σ)

hxp(σ)Ke−J
T σ hxp(σ)KhTxp(σ)

]
dσ.

It follows from (6) that (for τ > 0)

lxx(τ) = Σxph
T
xp(τ) + Σxxe

AT τ

=

(∫ ∞
0

hxp(σ)KET eA
T σdσ

)
eA

T τ −
(∫ ∞

0
hxp(σ)Ke−J

T σdσ

)
e−J

T τET .(27)

Thus the covariance of x = (δf, δ∆) is a linear combination of functions from the
impulse response of x to ẋ and of p to ṗ.7

So now we could try to fit observations of (f,∆) at as many locations as available
(say, M) and as a function of time t to an autonomous GP with mean function of the
form (F1, ∆̄) for some F ∈ R and ∆̄ ∈ RM−1 and covariance function of the form (18).

7In the case of common eigenvalues λ to −J and A there would in general also be terms of the form
P (τ)eλτ with P a polynomial of degree higher than those which might already result from multiplicity
in −J or A.
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We make the obvious step of shrinking the spanning tree to one for just the observed
nodes.

So the proposal is to fit an autonomous GP with mean function (F, ∆̄) and covariance
function of the form (19) to observations (fp,∆e) as functions of time t, but with B
truncated to having only a small number of columns. There is the question of how many
modes to allow. This can be decided by an automatic Bayesian method, but one should
expect the basic behaviour to be an OU process for fp.

Indeed, using GPML, I found that a 2-hour trace of frequency at 1-second intervals,
Figure 5, made publicly available by National Grid [NG], fit reasonably well to an OU
process with a decay time of about 30 minutes and amplitude 0.045Hz. The time constant
is so long compared to the period (about 2 seconds) or decay time (about 20 seconds)
of inter-area oscillations that it is hardly relevant, and one could just say that the basic
behaviour of fp is a Wiener process.
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Figure 5. A frequency trace over 2 hours from National Grid.

On shorter timescales, however, the data look smooth (Figure 6). A simple model is a
first-order filtered OU process (FOU). To justify this, imagine the system is aggregated
to a single node. Then we have two equations of the form

M ˙δf = −γδf + δp(28)

δ̇p = −Jδp+ σξ

It follows from the second equation that δp is OU with covariance function k(τ) =
σ2

2J e
−J |τ |. Then applying (4) we see that δf is a GP with covariance function

C(τ) =

∫ ∞
0

ds

∫ τ+s

−∞
dτ ′h(s)k(τ ′)h(τ + s− τ ′),
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Figure 6. The first 3 minutes 20 seconds of the frequency trace.

where h is the impulse response for the first equation, viz. h(s) = 1
M e
−Γs for s > 0, with

Γ = γ/M . Computation of the integral (for the generic case Γ 6= J) yields

C(τ) =
σ2

2JMγ(Γ2 − J2)
(Γe−J |τ | − Je−Γ|τ |).

A sample from the FOU process is shown in Figure 7.

Figure 7. A sample from the filtered OU process for Γ = 1/e, J = e2

Fitting an FOU to the first 3mins 20 secs of the data yields time constants 1/Γ and
1/J around 1.5mins and 2.2 secs, though one can not say which is which.

XXX Distinguishing x modes from p modes!: Timescales??
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Note that the same covariance function arises for the overdamped linear Langevin
process, with −Γ and −J being the two real eigenvalues.

XXX What do we expect for the basic behaviour of ∆e? (cf. fig in [TR+])
XXX And then what would inter-area oscillations look like?
XXX Then allow the mean to vary slowly in time.

5. Removing redundancy

The specification of our covariance function (19) via a mode shape matrix B and a
noise matrix P carries some redundancy: one can multiply each mode shape vector by an
arbitrary non-zero constant and rotate the complex mode shape vectors by an arbitrary
angle and carry out the inverse operations on P . To infer mode shape vectors from data
it is better to remove this redundancy.

One way is to use mode projectors. These are linear operators P of rank 1 or 2 (for
real or complex modes, respectively) such that P 2 = P and the image of a vector under
P is its component in the given mode.

XXX Work this out more.

6. Inferring parameters on a manifold

The spaces of projectors of given rank are manifolds, called Grassmannians. They can
not be covered by a single coordinate system of the form of Rn, so standard methods
to infer parameters, such as used by GPML, can not be applied directly. Extension of
methods to determine maximum likelihood points on arbitrary manifolds is required.

XXX Work it out.

7. Discussion

We have presented a method to detect oscillations in systems with many components.
One defect of the approach is that the forcing might not be Gaussian. For example,

even a Poisson process with independent Gaussian amplitude is not Gaussian. Indeed, a
consequence of the Gaussian assumption is that the covariance of the response is time-
symmetric, whereas this may not be true for real systems. Evidence for Gaussian distri-
bution of load is given in Fig.14 of [TT+], but they do not report on time-correlation.
Load variations are likely to be independent, however, which would make them Gaussian
and white. On the other hand, wind power is unlikely to be delta-correlated. There is
considerable research on the statistics of wind power, e.g. [DPP].

Another defect of the approach is that it does not allow for nonlinearity. Nevertheless,
for small fluctuations around an equilibrium, linearising is a good approach. It will fail
to give a good approximation, however, if the eigenvalues of any mode approach or cross
the imaginary axis. A big question with power flow oscillations, gene expression and
business cycles is whether there is a limit cycle of some underlying deterministic dynam-
ics, or just lightly damped oscillations around an equilibrium forced by noise. Figure 1
suggests to me that there was a Hopf bifurcation, but the assumption in the power sys-
tem community is that it was just a large kick that set off a lightly damped mode of
oscillation. For gene expression this has been addressed by [D+]. For business cycles,
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most economists decided long ago that they are just a near unit root process (mean-
ing lightly damped oscillations forced by shocks) [Rom], though Grandmont proposed
deterministic models with a variety of forms of dynamics [Gra].

To detect periodic components, my brother David [M] proposed the family of station-
ary covariance functions of the form

k(t) = σ2 exp

(
−2 sin2(ωt/2)

λ2

)
,

for which samples are exactly periodic with period 2π/ω. A slight modification was used
in [L+] to remove the effect of its non-zero mean, namely

k(t) = σ2 exp(λ−2 cosωt)− I0(λ−2)

exp(λ−2)− I0(λ−2)
,

where I0 is a modified Bessel function of the first kind. It has the limiting form

k(t) = σ2 cos(ωt)

as λ → ∞, called the Cos kernel, which has the property that it forces anti-periodicity
with anti-period π/ω: f(t + π/ω) = −f(t). Although these have found valuable uses,
and can be made less rigid by multiplication by a decaying kernel such as exp(−α|t|)
(which with the Cos kernel produces OUosc), it seems to me highly preferable to start
from the point of view of a linear system forced by noise.

XXX Real-time updating and connection to Kalman filter, cf [RR].
XXX NMR proposal
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Appendix A: Covariance for Underdamped linear Langevin process

Starting from the system (9), an impulse η/m = δ(t) produces response

x(t) =
1

ω
e−αt sinωt(29)

v(t) =
1

ω
e−αt(ω cosωt− α sinωt)
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An impulse ζ = δ(t) produces

x(t) = e−αt(cosωt+
α

ω
sinωt)(30)

v(t) = −e−αt(ω + α2/ω) sinωt

Thus the impulse response matrix (with components in order x, v) is

(31) h(t) = e−αt
[

cosωt+ α
ω sinωt 1

ω sinωt

−(ω + α2

ω ) sinωt cosωt− α
ω sinωt

]
.

The covariance matrix for the noise is

K =

[
0 0

0 σ2

m2

]
(ζ = 0). So applying (8) we obtain

Σ =

∫ ∞
0

h(s)KhT (s) ds =
σ2

4m2α

[
1

α2+ω2 0

0 1

]
.

So the end result from (7) is (for τ > 0)

(32) C(τ) =
σ2

4m2α
e−ατ

[ 1
α2+ω2 (cosωτ + α

ω sinωτ) − 1
ω sinωτ

1
ω sinωτ cosωτ − α

ω sinωτ

]
.

One can use 2mα = β and α2 + ω2 = k/m to simplify this in terms of the original
parameters if preferred.

Thus in particular, the xx-component of C(τ) is σ2

2βke
−ατ (cosωτ+α

ω sinωτ), as claimed

for the ULL. Similarly, the vv-component gives the covariance for the VULL.

Appendix B: Riemann’s ξ-function

An amusing remark is that Riemann’s ξ-function [Ri] is the covariance function for a
stationary Gaussian process. This is because it is even and the Fourier transform of a
positive function:

ξ(t) = 2

∫ ∞
0

Φ(ω) cosωt dω,

where Φ(ω) =
∑

n≥1(4π2n4e9ω/2 − 6πn2e5ω/2)e−πn
2e2ω . It generates infinitely smooth

samples, much like the “squared exponential” covariance,8 but the pseudo-random os-
cillatory decay of ξ(t) as t→∞ might be useful in some contexts.
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