
MA999 - TOPICS IN MATHEMATICAL MODELLING

Notes on modelling vector-borne disease
transmission

Sam Brand

February 14, 2018

MATHEMATICAL BACKGROUND

In this section I briefly outline (without proof) the results that will be used in modelling the
transmission of infectious pathogens between vertebrate hosts (humans, livestock etc.) and
arthropod vectors (mosquitoes, midges etc). These results can be found in pretty much any
standard textbook on probability theory (e.g. [1]).

Multi-type Branching Processes
A discrete time stochastic process {Z (n) ∈Nd , n = 0,1,2, ...} is called a Galton-Watson multi-
type branching process (MTBP), with d types, if it obeys a branching mechanism for each time
step n = 1,2,3, ...,

Z (n +1) =
d∑

i=1

[Z (n)]i∑
k=1

Oi ,k .

Where [Z (n)]i is the ith component of Z (n). Each random vector Oi ,k ∈Nd models the num-
ber of offspring the kth individual of type i has amongst the d different types; each Oi ,k is
an independent realisation of the i -type offspring random vector Oi . We will interpret the
time steps n as generations of infected individuals. If Z (m) = 0 for any generation m < ∞
then Z (n) = 0 for all subsequent generations n > m, and we say that the MTBP goes extinct.
The next generation matrix K for the branching process is defined as the expected number of
offspring of type j generated from a single type i individual,

K = (ki j )i , j=1,...,d = (E[[Oi ] j ])i , j=1,...,d .
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Assuming that the matrix K is irreducible, the reproductive ratio, R0, for the MTBP is defined
as the leading positive real eigenvalue of K1.

The only result we will need for MTBPs is that if R0 ≤ 1 the MTBP will go extinct with proba-
bility one2.

The Exponential Distribution
A non-negative random variable X ∼ exp(α) is exponentially distributed with rate parameter
α if it has the distribution function,

FX (x) = 1−e−αx , x ≥ 0.

USEFUL PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

• Memoryless: P(X > h +x|X > x) =P(X > h) for x,h ≥ 0.

• Constant hazard rate: P(X ∈ (x, x +h]|X > x) =αh +o(h) for x,h ≥ 0.

• Moment generating function: MX (θ) := E[exp(θX )] = α
α−θ , θ <α.

Each one of these properties can also be used to define an exponential random variable.

Finally, there is a useful result for the probability of another random variable, Y , being less
than an exponential random variable:

P(Y < X ) =
∫ ∞

−∞

∫ ∞

0
1(y < x)αe−αx dx dFY (y)

=
∫ ∞

−∞

∫ ∞

y
αe−αx dx dFY (y)

=
∫ ∞

−∞
e−αy dFY (y)

= MY (−α).

Using dFY (y) is a technical point, it extends the integral definition to random variables which
don’t have a density function fY = F ′

Y
3. If Y does have a density function then the differential

element dFY (y) = fY (y) dy . Note that MY is the moment generating function for the Y ran-
dom variable, and we have assumed nothing about Y except that it is real valued (and that
MY exists at −α).

1The existence of such an eigenvalue r such that |r | ≥ |r ′| for all other eigenvalues r ′ is guaranteed by the Perron-
Frobenius theorem.

2The sole exception is if each individual has exactly one offspring at each generation.
3For example if Y = Ȳ deterministically, then FY (y) = 1 if y ≥ Ȳ and 0 otherwise. This ‘not random’ random

variable doesn’t have a density function.
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Counting Processes, and their use as integrators
A counting process, {B(t ), t ≥ 0} is determined by an increasing sequence of random epoch
times (Tn)n≥0:

B(t ) = ∑
n≥0

1(Tn ≤ t )

The waiting durations between events are defined as Xn = Tn −Tn−1 for n = 1,2,3, .... If each
Xn is an independent realisation of X ∼ exp(α) we call the counting process a Poisson process
with rate α, which is denoted B ∼ PP (α). Counting processes can be used as integrators for
stochastic integrals with bounded integrands g (·),∫ T

0
g (t )dB(t ) = ∑

n:{0≤Tn≤T }
g (Tn).

If the integrand g (·) is predictable4, and B(t ) is a Poisson process with rate α, we have that
the average of the stochastic integral is the time integral of the average integrand rescaled by
the rate of the Poisson process,

E
[∫ T

0
g (t )dB(t )

]
=α

∫ T

0
E[g (t )] dt .

This is essentially a consequence of the constant hazard rate property of exponential random
variables. This integration property can also be used to define Poisson processes via their
compensator5. This gives the thinning and compound properties of Poisson processes:

• Thinning: Suppose events can happen at the epoch times of a rate α Poisson process
B(t ), but each event only does happen with the success of an independent Bernoulli
trial at probability p (one for each epoch time). The number of events that do happen
is a Poisson process with rate pα.

• Compound: Suppose events happen at the epoch times of a set of Poisson processes
(i = 1, ..., N ) each at rate αi . The total number of events is a Poisson process with rate∑

i αi .

VECTOR-BORNE DISEASES

Diseases spread by insect biting (i.e. vector-borne diseases or VBDs) include some of the
most devastating suffered by humans, e.g. malaria, spread by Anopheles gambiae spp. and
many other mosquito species and Flaviviruses such as Dengue fever, yellow fever and Zika
spread by (predominantly) the mosquitos Aedes aegypti and Aedes albopictus. VBDs can also

4Essentially, if g is left-continuous.
5A compensator for a stochastic process is the unique predictable process such that the difference between the

process and its compensator is a (local) martingale. One definition of a Poisson process at rate α is that it is
the only counting process with the simple deterministic compensator αt .
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effect commercial livestock causing economic damage, e.g. the diseases of ruminants Blue-
tongue virus spread by Culicoides genus biting midges. Other VBDs are zoonotic, affecting
wild animals, commercial livestock and humans such as West Nile virus and Rift Valley fever.

MODEL DESCRIPTION

This lecture presents a modelling approach for VBDs based on the early stages of a VBD out-
break, which captures the generic features of vector life histories that are relevant to trans-
mission via biting. There are two types of individual: hosts and vectors. Each individual is
also described by a disease state:

For hosts these disease states are

• susceptible (if bitten by an infectious vector could contract the VBD),

• latent (infected but not yet infectious),

• infectious (if bitten by a susceptible vector then could transmit to that vector), and

• recovered (the host has recovered, or died, from the VBD, therefore she no longer trans-
mits, and has at least temporary immunity to re-infection).

The disease states for vectors are

• susceptible (biting an infectious host could cause infection),

• latent (infected but the infectious pathogen that causes the VBD has not yet escaped
the gut of the biting insect and invaded the proboscis, therefore bites do not cause
infection), and

• infectious (bites from the insect can cause transmission to hosts).

Female insect vectors bite throughout their lives, potentially transmitting disease, using the
bloodmeals from hosts for sustenance and in order to bring their eggs to maturity. Between
bites female vectors are either producing new eggs (oogenesis), laying eggs (oviposition) or
seeking for new hosts in order to bite; a full bite-to-bite cycle is called the gonotrophic period
for the vector. For each biting vector we consider their biting process B(t ) as being a count-
ing process with waiting durations Xn (these model the duration of the gonotrophic cycle)
being independent and identically distributed with mean duration for the gonotrophic cycle
Ḡ . Vector lives are short compared to hosts, and they undergo constant hazard of death from
predation (and other sources), therefore, in accordance with the constant hazard property,
their life duration is modelled as L ∼ exp(µ) where µ is called the mortality rate of the vector.
Not all bites on infectious hosts will cause infection in the biting vector, the probability of
transmission from host to vector is denoted P−−→

HV
, similarly not every bite from an infectious

vector causes infection, the vector to host transmission probability is denoted P−−→
V H

. The la-
tency period for vectors is called the extrinsic incubation period (EIP), or sporogony period
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for malaria6, which is modelled as a random non-negative duration E . We assume that hosts
are long lived compared to their duration of latency and therefore all hosts live at least until
they become infectious. The difference between the onset time for infectiousness after infec-
tion for a host (Ti n f ) and the recovery time for the host (Tr ec ) is called the infectious duration
for hosts and is a non-negative random variable D .

REPRODUCTIVE RATIO FOR VBDS

I don’t define a full population transmission model, which should include dynamics for the
numbers of individuals of both types and each disease state. Instead, I rely on a result due
to Ball and Donnelly [2]; that the early stages of an outbreak are essentially equivalent to an
approximating (multi-type) branching process when the number of susceptible individuals
is large. The generations of the approximating branching process represent the number of
individuals (of each type) infected in that generation, where the nth generation of the pro-
cess are all individuals n infections away from the initial cases (generation 0). In particular
Ball and Donnelly demonstrate that the probability of the branching process approximation
going extinct is the same as that of the full epidemic model when the number of susceptible
individuals go to infinity.

Therefore, R0 ≤ 1 for the approximating branching process always leads to extinction of the
VBD; this kind of argument has been generalised to many types of epidemics [3, 4].

LEADING EIGENVALUE OF NEXT GENERATION MATRIX

The branching mechanism for the approximating branching process can be constructed from
our model of the biting process of the vectors, and by assuming that (i) every bite on an in-
fected host is from a susceptible vector, and (ii) every bite by an infectious vector is on a
susceptible host. This assumption is reasonable when the number of infected individuals is
small compared to the number of susceptibles. I denote the average number of vectors in-
fected by a single infected host during her complete infectious duration R−−→

HV
, and the average

number of hosts infected by a single infected vector during her complete infectious duration
R−−→

V H
. Therefore the next generation matrix for the VBD is:

K =
(

0 R−−→
HV

R−−→
V H

0

)
.

Which has two distinct eigenvalues: ±
√

R−−→
HV

R−−→
V H

; this implies that

R2
0 = R−−→

HV
R−−→

V H
.

6Malaria gets to be special.
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CALCULATING R−−→
V H

: AVERAGE NUMBER OF HOSTS INFECTED BY A SINGLE INFECTED VECTOR

The random number of bites the infected vector makes after her EIP and before her death
can be written as a stochastic integral with respect to the biting process

N−−→
V H

=
∫ ∞

0
H (t −E)(1−H (t −L)) dB(t ).

Where H is the left-continuous version of the Heaviside function7. Vectors are infected with
the VBD by biting an infected host, therefore by our model assumption (iid waiting times
between bites) the time until the next bite (and subsequent bites) is a realisation of the wait-
ing time random variable X . In the lecture, we only got far enough to consider the model
choice where B(t ) is a Poisson process with biting rate α= 1/Ḡ . Since, the vector life duration
is exponentially distributed L ∼ exp(µ), by the memoryless property of exponential random
variables, the vector’s remaining life after the infecting bite is also distributed according to L.
These two model choices justify treating the infection time for the vector as ‘time zero’, and
ignoring the life-history of the vector before it got infected.

The average number of infections caused amongst hosts per infected vector in the MTBP
model8 is the mean number of bites the infected vector makes after her EIP (see figure 1 for a
schematic) and before her death (E[N−−→

V H
]) multiplied by the per bite probability of transmis-

sion from vector to host (P−−→
V H

). From the result on stochastic integrals with respect to Poisson
processes we have,

R−−→
V H

= P−−→
V H

E
[∫ ∞

0
H (t −E)(1−H (t −L)) dB(t )

]
=αP−−→

V H

∫ ∞

0
E
[
H (t −E)(1−H (t −L))

]
dt

=αP−−→
V H

∫ ∞

0
FE (t )e−µt dt

=αP−−→
V H

[−e−µt FE (t )

µ

∣∣∣∞
0
+ 1

µ

∫ ∞

0
e−µt dFE (t )

]
=
αP−−→

V H

µ
ME (−µ).

This result can be easily interpreted, it is the probability that the vector survives her EIP
(P(E < L) = ME (−µ) see above) multiplied by the average number of bites a vector would
make in her lifetime (α/µ) and the probability of transmission per bite (P−−→

V H
). In general, the

biting of a vector will not be memoryless and therefore the distribution of E will also ‘inter-
fere’ with the expected number of bites made post EIP, this result is particular to the Poisson
process biting assumption.

7H (x) = 0 for x ≤ 0 and 0 otherwise.
8Recall the MTBP model assumes that the probability that the vector bites a susceptible host is one.

6



CALCULATING R−−→
HV

: AVERAGE NUMBER OF VECTORS INFECTED BY A SINGLE INFECTED HOST

Suppose there are NH hosts available for the NV size vector population to bite. We assume
that there is no reason for the vectors to prefer biting any particular single host, and the desire
to bite a particular host is independent of the host’s previous bites, therefore each bite from
the whole vector population has probability 1/NH of occurring on that particular host. Since
the MTBP model is only appropriate when the populations of hosts and vectors is large, the
biting rate from the whole population will be very large whilst the probability 1/NH will be
vanishingly small. The law of rare events gives that the number of ‘successes’ from a large
numbers of independent trials with very small probabilities of success will be Poisson dis-
tributed, therefore the biting rate on an individual host will be (at least approximately) a Pois-
son process, even if we don’t believe that the biting of any individual vector is a Poisson process.

We didn’t progress past modelling the biting of a vector as a rate α Poisson process in the
lecture. Therefore, instead of calculating the rate of biting from a vector population at demo-
graphic equilibrium9, we can calculate the biting process from the whole vector population
on a single host (denoted B∗(t )) using the compound and thinning properties of Possion pro-
cesses. B∗(t ) is the Poisson process derived from compounding over the biting processes of
each vector in the vector population and thinned by considering the chance of selecting one
individual to bite; that is

B∗(t ) ∼ PP (αNV /NH ).

Therefore, as before we write the random number of potential infections amongst the vectors
due to biting a single infected host as a stochastic integral (see figure 1 for a schematic),

N−−→
HV

=
∫ ∞

0
1(Ti n f < t < Tr ec ) dB∗(t ).

The average number of vectors infected by a single infected host is:

R−−→
HV

= P−−→
HV

E
[∫ ∞

0
1(Ti n f < t < Tr ec ) dB∗(t )

]
= P−−→

HV
E
[∫ Tr ec

Ti n f

α
NV

NH
dt

]
= P−−→

HV
α

NV

NH
E[D]

CONTROLLING VECTOR-BORNE DISEASES

The full expression for the reproductive ratio is

R2
0 = R−−→

HV
R−−→

V H
=V

NV

NH

α2ME (−µ)

µ
E[D].

Where V = P−−→
HV

P−−→
V H

is called the vector competence of the vector for the transmissible pathogen.

The expression for R2
0 has a few notable features:

9See this paper for more details on this if you’re interested [5].
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Figure 1: Schematic of transmission from infected vectors and hosts. Top: Red dots represent
bites from the infected vector onto hosts, but only those after the end of the vector
EIP (shaded red; also note that the vector might not survive the EIP) can potentially
cause infection. Bottom: Red dots represent all bites from vectors onto the host,
but only those during the infectious period of the host (shaded red) can potentially
cause infection to the biting vector.
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• R2
0 doesn’t depend on the absolute numbers of either vectors or hosts, but rather on the

vector-to-host ratio. From an epidemiological perspective this is because to be part of
a chain of transmission a host must be bitten at least twice, the odds of this happening
decrease if the number of vectors per host is smaller (even if there were more vectors in
absolute numbers).

• R2
0 is insensitive to the host’s epidemiology except for the mean duration of infectious-

ness; for example the duration of latency for hosts doesn’t effect R2
0 , or the distribution

of the infectiousness period. This is because we are assuming that the latency period
for hosts is short compared to the host’s life.

• In contrast, R2
0 can depend sensitively on the EIP distribution for vectors, because the

probability of vectors dying before they become infectious is usually fairly high.

If we can reduce R2
0 to less than 1 the VBD must be eliminated (see result on MTBPs), there-

fore the reproductive ratio calculation gives an estimate of the effort that would be required
to eliminate a VBD that depends on measurable entomological/epidemiological quantities
such as vector biting rate, or the average infectious duration of hosts. We (briefly) consider
three broad categories of control each parameterised by a control ‘effort’ parameterχc ∈ [0,1]:

1. Reducing the vector population. If the vector population can be reduced by some pro-
portion χc (maybe by spraying sites where vectors lay eggs with larvicidal treatments)
then we will reduce R2

0 by a factor (1−χc ). The critical level of vector population reduc-
tion (χ∗

c ) is when a post-control R2
0 = 1 is achieved:

(1−χ∗
c )R2

0 = 1 =⇒ χ∗
c = 1− 1

R2
0

.

For example, if R2
0 = 10 before control we would need to reduce the vector population

by 90% to achieve elimination.

2. Reducing bites from the vector population. If we can reduce the bites on the host pop-
ulation by a factor χc , for example by deploying bed nets to impede nighttime feeding
by the vectors on the particular hosts we want to protect (humans), then we will reduce
R2

0 by a factor (1−χc )2. The critical reduction in biting to achieve elimination is:

(1−χ∗
c )2R2

0 = 1 =⇒ χ∗
c = 1− 1

R0
.

Note that if R2
0 = 10 before control we would need to decrease biting by 68.4% to achieve

elimination, so in this sense elimination by reducing biting is ‘easier’ than elimination
by reducing vector population. This is because reducing biting reduces the number
of hosts infected per infected vector and the number of vectors infected per infected
host. In contrast, reducing the vector population only reduces the number of vectors
infected per infected host.
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3. Reducing the life expectancy of biting vectors. Often it is not possible to reduce the vec-
tor population size either because of logistical constraints or because of larvicidal resis-
tance. However, it is possible to deploy insecticidal poisons close to the hosts such that
vectors that bite hosts are exposed and have a reduced life expectancy from E[L] = 1/µ
before control to the new post-control life expectancy E[Lc ] = (1−χc )/µ. This decrease
in life expectancy is equivalent to an increase in the mortality rate µ→ µ/(1−χc ). We
assume that this increase in mortality doesn’t affect the number of vector arriving to
bite hosts but does reduce the transmission potential of infected vectors, therefore the
critical increase in mortality obeys the equation,

R2
0µ

ME (−µ)

ME (−µ/(1−χ∗
c ))

µ(1−χ∗
c )

= R2
0

ME (−µ)

ME (−µ/(1−χ∗
c ))

1−χ∗
c

= 1.

This is different from the last two cases: (i) there isn’t a simple closed form solution,
a numerical solution requires using a root finding solver, and (ii) the estimate of criti-
cal life expectancy reduction to achieve elimination will depend not just on R2

0 (before
control), but also the pre-control mortality rate for vectors and the distribution of the
EIP.

Traditionally, in mathematical VBD analysis, it was most common to assume that the
EIP was the same for each infected vector; that is E = Ē deterministically. In this case,
the mean duration of life for the vector after her EIP is ME (−µ)/µ= exp(−µĒ)/µ. There-
fore, the deterministic EIP assumption implies that increasing the mortality rate for
vectors exponentially decreases R2

0 , and that mortality rate increase nearly always looks
like a favourable control strategy. As computer simulations of VBDs have become more
common, its become more common in the literature to assume that the EIP is exponen-
tially distributed10 with incubation rate ν= 1/Ē . If E ∼ exp(ν) then the mean duration
of life after EIP is ME (−µ)/µ = ν/µ(µ+ν) and increasing the mortality rate of vectors
decreases R2

0 at sub-exponential rate. If Ē ¿ E[L] then nearly all infected vectors will
survive their EIP, and the details about EIP distribution become irrelevant to predicting
R2

0 , just as the mean latency period of hosts does not appear in our final expression.
However, for a lot of VBDs the mean EIP duration Ē is actually longer than the life ex-
pectancy of the vector E[L]... the distribution details about the EIP become significant
factors!

This is as far as we got in the lecture.
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